
IICAL
L POSTOÄA0OA-« SOHCX»

/I 0*0 *'V

DECEMBER 1975

THE GRAPHICS TERMINAL DISPLAY SYSTEM
A POWERFUL, GENERAL-PURPOSE CAI PACKAGE

Frederick Wm. Hornbeck

Lynn Brock

APPROVED FOR PUBLIC RELEASE.
DISTRIBUTION UNLIMITED.

NPRDC TR 76-25 December 1975

THE GRAPHICS TERMINAL DISPLAY SYSTEM
A POWERFUL, GENERAL-PURPOSE CAI PACKAGE

Frederick Wm. Hornbeck

and

Lynn Brock

San Diego State University

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the Navy Personnel
Research and Development Center under contract No. N61339-73-C-0184.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Advanced Research Projects Agency
or the U. S. Government.

Prepared for

Navy Personnel Research and Development Center
San Diego, California 92152

1INf,T,ASSTFTFD
SECURITY CLASSIFICATION OF THIS PAGE (Whmn Dmtm Entmrmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBFP

NPRDC TR 76~25

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Subtlllm)

THE GRAPHICS TERMINAL DISPLAY SYSTEM; A
POWERFUL GENERAL-PURPOSE CAI PACKAGE

5. TYPE OF REPORT ft PERIOD COVERED

Technical Report
June 1974 - April 1975

6. >tRF"ORMING ORG. REPORT NUMBER

7 AUTHORS

F. W. Hornbeck
L. Brock

ft. CONTRACT OR GRANT NUMBERS

N61339-73-R-184

9. PERFORMING ORGANIZATION NAME AND AOORESS

San Diego State University
San Diego, California 92182

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

62763N
PF55.522.002.01.60

11. CONTROLLING OFFICE NAME AND ADDRESS

Navy Personnel Research and Development Center
San Diego, California 92152

12. REPORT DATE

December 1975
13. NUMBER OF PAGES

72
14. MONITORING AGENCY NAME ft ADDRESS«-// dlltmrmnt /root Controlling Ottlcm)

Navy Personnel Research and Development Center
San Diego, California 92152

15. SECURITY CLASS, (ot thlm rmport)

UNCLASSIFIED

15«. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ot thlm Rmport)

Approved for public release, distribution unlimited.

17 DISTRIBUTION STATEMENT (ot thm mbmtrmct mntmrmd In Block 20, It dlttmrmnt from Rmport)

18. SUPPLEMENTARY NOTES

Prepared in cooperation with Navy Personnel Research and Development Center.

19. KEY WORDS (Continue on rmvmrmm mid» It nmcmmmmry and idmntlty by block numbmr)

Computer-assisted instruction, graphic presentation methods, instructional
technology, CAI systems, CAI authoring

20. ABSTRACT (Contlnum on rmvmrmm mldm It nmcmmmmry and Idmntlty by block numbmr)

The report describes a system developed to support research and development
in computer-based instruction. A powerful and versitile CAI language was
developed which allows authors to present materials on a graphic display, on
slides, or by means of voice synthesisser. The language was developed on an
IBM 360/50 computer and is transportable to other similar machines. Comparisons]

are made between this system and others, such as PLANIT, PLATO, and TICCIT.

DD , F°:*> 1473 EDITION OF 1 NOV 68 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAOE (Whmn Dmtm Bntmrmd)

FOREWORD

This work was supported through a contract with the San Diego State
University under Exploratory Development Task Area PF55.522.002 (Methodology
for Developing/Evaluating Navy Training Program), Work Unit Number
PF55.522.002.01.60 (Advanced Computer Based Research). This work unit
is jointly guided by the Advanced Research Projects Agency (Account Symbol
9740400.1311) and the Navy Personnel Research and Development Center
(NAVPERSRANDCEN). The project was initiated in response to the require-
ment for "improvements in training methodologies, measurement techniques,
management and administration, including decision criteria required for
their rapid implementation" contained in General Operational Requirement
43, Revised 10/71.

Dr. William E. Montague was the technical monitor for NAVPERSRANDCEN in
this effort. The work was conceptualized originally in a proposal submitted
by Dr. F. W. Hornbeck and Dr. J. R. Levine during the spring of 1973. The
developmental effort was the responsibility of Mr. L. Brock assisted by
Ms. P. Lamb.

J. J. CLARKIN
Commanding Officer

SUMMARY

Problem

A need existed for a computer-assisted instruction (CAI) system
capable of supporting varied research needs. Such a system is
especially needed for investigations of the value of graphics
displays and voice synthesization. The system would utilize widely
available computer services, and standard terminal hardware so that
the CAI system would be readily transportable.

Purpose

The purpose of this report is to describe the Graphic Terminal
Display System (GTDS), which was designed expressly to meet the
R&D requirements of the Navy Personnel Research and Development
Center (NAVPERSRANDCEN).

Approach

A Graphics Terminal Display System (GTDS) was developed by the San
Diego State University under contract with NAVPERSRANDCEN. The
system utilizes an IBM 360/50 computer and interfaces with a large-
screen graphics display terminal, a random-access slide projector,
and a speech synthesizer. An authoring language, Graphics Assisted
Instructional Language (GRAIL), was developed to allow lessonware
production for the GTDS. Therefore, the author can present informa-
tion to a student by means of a visual alphanumeric display, computer
graphics, photographs, or synthesized speech. Student responses are
transmitted from crosshair cursors on the display or from the keyboard
of the terminal. GRAIL has an instruction set making it a versatile
CAI author language. Control statements, a FORTRAN subroutine capability,
and specific instructions for the flexible utilization of all student
station devices combine into a complete closed system.

Findings and Conclusions

The GTDS provides a powerful capability for research support. It
compares favorably with other CAI systems such as PLATO, PLANIT and
TICCIT, and is transportable to virtually any IBM 360 or 370 computer
system. The widespread availability of such computer systems could
make GTDS an attractive alternative for CAI applications.

Recommendations

It is recommended that the GTDS be further enhanced so that it can
be used for a broad range of Navy training and R&D applications.

vii

CONTENTS

Page

INTRODUCTION 1
Problem 1
Purpose • 1

SYSTEM DESCRIPTION 1
The Author Language and Software Support 1
Present Hardware Implementation 4
The Student Station A
Communications 5
The Computer 6

FINDINGS AND CONCLUSIONS 9
Comparison with Other Systems 9

Portability and Implementation Options 9
Courseware Development 10
Cost 11

Potential Growth and Development 11

RECOMMENDATIONS 12

REFERENCES 13

APPENDIX. GRAPHIC TERMINAL DISPLAY SYSTEM EXTERNAL DOCUMENTATION ... 15

DISTRIBUTION LIST 61

FIGURE

1. Schematic diagram of the present implementation of GTDS at the San
Diego State University 7

ix

INTRODUCTION

Problem

A need existed for a computer-assisted instruction (CAI) system
capable of supporting varied research needs. Such a system is especially
needed for investigations of the value of graphics displays and voice
synthesization. The system would utilize widely available computer
services, and standard terminal hardware so that the CAI system would be
readily transportable.

Purpose

The Graphics Terminal Display System (GTDS) was designed under contract
with the San Diego State University expressly to support research and
development (R6J)) activities of the Navy Personnel Research and Development
Center (NAVPERSRANDCEN) in advanced computer-assisted instruction (CAI). It
is, however, a system of broad applicability and can be relatively easily
transported to any installation having access to IBM System 360 or 370
hardware and software support. This report contains a discussion of the
functional characteristics of the author language and its software support,
a detailed description of the present hardware implementation at the San
Diego State University, and comments on the continued development of the
system. A complete specification of the Graphics Assisted Instructional
Language (GRAIL), the author language, and other external documentation are
included in the appendix.

Major requirements of NAVPERSRANDCEN researchers reflected in the design
of the GTDS are sophisticated graphic display capabilities, vocal output,
and photographic slide projection. Specific commands for the flexible utili-
zation of the devices which provide these capabilities have been incorporated
in the author language, GRAIL, a powerful programming language designed
expressly for the preparation of computer-assisted instructional material.

SYSTEM DESCRIPTION

The Author Language and Software Support

All GTDS software is carefully structured, with each functional unit
isolated in its own explicit module. This, along with extensive documenta-
tion in the form of comment statements in programs and adequate system
descriptions, will guarantee easy maintenance, modification, and transporta-
tion of the package. GTDS is written primarily in IBM System 360 Assembly
Language, with some routines written In PL/I.

Major GTDS facilities are the compiler for GRAIL, the author language
and Extract and Collect Logically Indicated User Records (EXCALIBUR), a
subsystem for the collection of data required for the analysis of student
performance. The GRAIL author language includes the following features:

. Structured programming support, which allows the author of CAI
materials to check his materials during development, rather than having to
wait until they are tested or in general use to see whether they are correct.

. Reentrant code, which allows several students to be "taught" using
the same machine instructions, thereby saving storage.

*

. Expressions (character and arithmetic), which are allowed virtually
anywhere a variable can occur.

. Extensible language facility. The macro definition language (MDL) is
an integral part of GRAIL. It allows the author to add operations and
constructs to the language, and gives him virtually complete freedom in
selecting basic operations to be used in teaching a course.

• Dynamic storage allocation. Main (core) storage is allocated only
when the structure requiring it is entered, thus reducing main storage use.

. Portability. All code dependent on the operating system is isolated
in one area, thus allowing easy conversion to any operating system that
runs on the IBM 360-370 series of computers.

. Generation of 'Wchine code" (computer instructions). All machine
code is generated by GRAIL, which is typically five to ten times faster
in execution than "interpretive" systems.

EXCALIBUR allows author-controlled recording at any time, in addition
to providing automatic recording of student log-on and log-off times. Since
records are compatible with such languages as FORTRAN, PL/1, COBOL, and
ASSEMBLER, data can be analyzed on any machine supporting magnetic tape and
these languages. Finally, records can be easily selected for further
analysis through very simple PL/1 programs.

Other components of the total system are routines for run-time support
of GRAIL courseware and the Votrax speech synthesizer dictionary file (VDF)
which contains the Votrax phonemic encoding for the dictionary entries.

One of the principal requirements has been for GRAIL to support high-
quality graphics for CAI research. The GTDS has a sophisticated graphics
capability which provides the user great flexibility in formatting and
selecting sizes for graphics displays with little programming effort. A
detailed description of this capability is contained in the Appendix,
Section 5 on the Terminal Control System (TCS). The TCS allows the user

to modify the scale of a displayed figure. A dimension of the display
can be magnified or shrunk using a simple command. In addition, a
feature called "clipping" allows the user to designate which part of
a figure should actually be drawn on the screen. Figures can be rotated
as needed. Another feature called "windowing", allows the user to dis-
play any part of a figure on the entire screen, or display a figure on
any part of the screen, thereby leaving room for presenting other informa-
tion. These capabilities are found in no other CAI system. Extensive
additional flexibility exists for the GRAIL author through the use of the
FORTRAN subroutines described in the TCS documentation. The GRAIL instruc-
tion 'FCALL1 permits the courseware author to use these and any other
FORTRAN subroutines known to the system. This ability permits the author
access not only to routines written specifically for this system but to
many existing graphing and plotting packages as well.

As the language evolved, many other capabilities were incorporated into
what is now a very powerful, general-purpose CAI language. The number of
concepts (instructions) in GRAIL is around thirty and there are about the
same number of GRAIL functions. They are explicitly defined in Section 2
on language specifications and Section 3 on GRAIL functions in the appendix.
Much of the power of the language is provided by the ability to call FORTRAN
subroutines and by the inclusion of the Macro Definition Language (MDL)
which is described in Section 6 of the appendix. MDL allows the GRAIL
author to create new concepts or instructions on an ad lib basis. For
instance, the MDL could be used to add a desk calculator mode which a
student could use to calculate an answer even though the author, did not
anticipate that he would need to do the calculation. Recursion is permitted
in MDL; the definition of a macro may reference itself.

The highly sophisticated, ALGOL-like control features of GRAIL provide
a richness of program flow options not found in other CAI languages. The
IF-THEN-ELSE, DO-WHILE/UNTIL, DOINC/DODEC, and CASES constructs (see Section
2.2 of the appendix) provide the courseware author unlimited freedom. The
ESCAPE and LIMIT constructs provide safeguards for the wary.

These characteristics make GRAIL ideally suited to R&D activities in
CAI. Not only is there abundant flexibility for courseware development,
but there is also the capability to emulate or simulate other author languages
(using MDL) should that be desirable.

As discussed in Section 1 on concepts and facilities in the appendix,
GTDS is designed to run GRAIL courses with a high degree of machine ef-
ficiency in terms of both storage and time. Those features which contribute
most to this are the fact that GRAIL courses are compiled rather than inter-
preted, the machine code produced by the compiler is re-entrant, storage
allocation is dynamic, and GRAIL course sections are limited to 4K (4096)
bytes of compiled code.

This last limitation (on the size of a section) does not limit the
size of a course or lesson because a course section may invoke any number
of other (non-course) sections, A course (or lesson) consists of one course
section which remains loaded throughout the session in which it is being
used and any number of other sections which are in core only during execu-
tion by the course section of one or more students. Data needed in more
than one section of a course are always available if defined at the course
level. This organization has the desirable side effect of forcing course
authors to employ structured programming strategies. An important benefit
of this is the facilitation of section sharing across courses. Once a
section describing the terminal keyboard for the student has been written,
for instance, it will be available for inclusion in the introductory lesson
of any other course.

To facilitate the use of GTDS, a GRAIL course to teach GRAIL programming
is now being prepared. This package will contain an instructional portion
as well as a reference component. The reference material will consist of
the formal definitions of GRAIL instructions as in the appendix of this
report but will also have parallel descriptions at a lower level of
abstraction and examples of the application of each instruction, function,
and other construct.

Present Hardware Implementation

All of the GTDS hardware except the Student Station Interface are
'off the shelf' items that are readily available and in relatively wide
use, though not necessarily in CAI applications. The only hardware in-
novation was the combination of these devices into one system to provide
a single, integrated student station.

Whenever possible in the development of software or selection of hard-
ware options, established standards (such as the ASCII character set) and
industry conventions (such as the RS-232-C communications hardware interface)
have been employed.

The Student Station

The primary component of the student station is a Tektronix 4014
Graphics Display Terminal. This device provides visual alphanumeric and
graphic program output to the student. Vendor-supplied and contractor-
developed software support four different character font sizes for alpha-
numeric display on the 11" x 15" direct-view storage tube display screen.
The full ASCII upper and lower case character set is supported. Substantial
support for sophisticated two-dimensional graphic output is provided. The
terminal keyboard and thumb-wheel-controlled cross-hair cursors constitute
the mechanisms for student input to the system. A Tektronix 4610 hard copy
unit allows for the generation of copy upon command from the display terminal,
the hard copy unit, or the computer.

Additional visual display capability is provided by the inclusion
of a Kodak RA-960 random-access slide projector in the student station.
The projector may be powered on or off, and any one of the 80 slides may
be randomly selected for projection under program control by the GTDS
hardware and software interface.

Audio response capability is supplied by a Votrax model 6 voice
synthesizer. This device generates a set of 63 American English male
phonemes with appropriate interphonemic transitions from digital input.
GTDS support allows the GRAIL author to generate speech output using
phonemic literals, post-compilation but pre-execution dictionary lookup
of previously encoded words, or longer, previously encoded passages.
System hardware and software components bring speech rate, pitch, and
volume under GRAIL author control.

The Student Station Interface (SSI) was designed and fabricated
by Sensors, Data, Decisions, Inc. (SDD) of San Diego. The SSI is built
on one circuit board mounted In the pedestal of the Tektronix terminal
and plugged into the accessory mother board of that device and one circuit
board installed in the Votrax speech synthesizer. It contains all the
logic for device selection for the computer output data stream, control
of the slide projector, and control of the rate, pitch, and speed of the
vocal output, and provides device status checking capabilities. It responds
to communication rate selection via the external switches of the Tektronix
terminal (110, 150, 300, 600, 1200, 1800, 2400, 4800, and 9600 baud). Its
installation required minimal alteration of the three basic student station
devices. The SSI may be completely removed from the circuit via one of the
option switches of the Tektronix terminal keyboard.

Communicat ions

Basic system design requirements call for the student stations to be
remote from the computer on which the software resides. This condition Is
almost always apt to obtain when applications require support of graphics
but the number of terminals and level of usage do not justify dedication of
a computer to the CAI system which Is sufficient for graphics. It will also
be so whenever terminals of the same system must be located at two or more
distinct locations. In the case of the present implementation, the computer
is on the campus of the San Diego State university; terminals are likely to
be located at the University, the Naval Training Center (NTC), San Diego,
and other sites.

Considering the small number of terminals currently required, major
expenditures for high-speed communications channels cannot be justified.
Consequently, the communications system has been designed to utilize voice
grade (i.e., unconditioned) 4-wire leased lines. These lines are currently
$14.00 per month in the San Diego area, which, combined with their low error
rate, makes them highly competitive with ordinary, 2-wire dial lines for
this application. These lines have an 1800 baud, full duplex capability,

although they are currently running at 1200 baud due to equipment limita-
tions at the computer end. This rate is at or near the minimum for any
appreciable use of graphics but is satisfactory to support all other aspects
of the GTDS. With the exception of the modems and data access arrangements
to be described immediately below, all existing hardware in the GTDS can
operate at rates up to 9600 baud when used in remote locations. The
Tektronix terminal can be driven at much higher rates—about 50K baud—
when wired directly to a computer.

Maximum portability of the student stations would be obtained if
accoustical couplers sufficient to the 1200 baud, full duplex, data rate
were obtainable. If they were, a student station could be conveniently
installed at any location where 110 volt a.c. power and an ordinary tele-
phone hand set were available. Although there have been allusions to 1200
baud acoustical couplers in trade journals, we are not aware of the avail-
ability of one of demonstrated reliability and reasonable cost.

Consequently, given that leased lines of the direct-dial network are
to be used, the only remaining communications interfaces available are Bell
System Data Sets or commercially supplied modems used in conjunction with
Bell System data access arrangements (DAAs). Tariffs for Bell System 1200
baud data sets are quite high (about $45.00 per month for the CDT set re-
quired at the terminal end and $75.00 per month for the CBT set required
at the computer end). Hence, we decided to employ purchased modems. The
ones selected are General DataCom 202-5A sets which can be used at both
ends and cost $361.00 apiece.

The University's Data General Nova 1220 computer serves as a hardware
and software I/O interface for the GTDS System. The Nova is attached to
the main computer's (an IBM System 360/50) multiplexor channel. System soft-
ware support in the Nova provides for the intraline editing of textual
material as well as good, relatively inexpensive I/O interfacing to the 360.
A schematic diagram of the present GTDS implementation is presented in
Figure 1.

The Computer

The computer presently serving as host for the GTDS is the IBM
System 360/50 at the San Diego State University. This machine currently
has 384K bytes of core memory. The operating system is IBM's Disk Operating
System. The normal operating configuration provides three partitions for
multitask servicing of user programs. Hie background partition is the
largest and handles the bulk of student and faculty jobs. The smaller fore-
ground partitions are used primarily for administrative applications programs
(F2) and for POWER (Fl), which drives the Remote Job Entry/Remote Job Output
terminals on campus. When GTDS is loaded, it resides in 64K bytes in Fl
along with POWER. There is only one other on-line system run at this
installation so that it is not inconvenient to provide a very high inter-
rupt priority to GTDS.

Multiplexer Channel

Nova

1220

Modem

Leased
4-wire line

NTC

Modem

Modem Modem

SSI

SDSU

SSI

Tektronix
4014

Graphics
Terminal

Random-
Access
Slide

Projector

Votrax
Speech

Synthesizer

Tektronix
4014

Graphics
Terminal

Random-
Access
Slide

Projector

Votrax
Speech

Synthesizer

Figure 1. Schematic diagram of the present implementation of GTDS at
San Diego State University.

FINDINGS AND CONCLUSIONS

Unlike "off-the-shelf" hardware components, GRAIL and its supporting
software facilities in the GTDS present an entirely new CAI author language.
Of course, newness if of no utility in and of itself—particularly as far
as software systems are concerned. Evaluating a new system it usually
means several months of exterminating problem areas, but GRAIL has many
desirable characteristics and should be worth the effort. The greatest
need now is to have the system used in as demanding a way as possible. It
is anticipated that the NAVPERSRANDCEN projects in which it is scheduled
for immediate application will provide such use. The primary goal of
providing a good graphics capability for NAVPERSRANDCEN research activities
should be met by the existing implementation. The speech synthesizer and
random-access slide projector have each figured prominently in the planning
of at least one research project to be undertaken at NTC, San Diego.

Comparison With Other Systems

Among the many CAI systems avialable, there are three which have re-
ceived considerable attention and which collectively reflect most of the
options available to the CAI system designer. All three have received sub-
stantial backing from the National Science Foundation. They are PLANIT
(Bennick and Frye, 1970), PLATO (Programmed Logics for Automated Teaching
Operations) (Bitzer and Johnson, 1971), and TICCIT, (Time-Shared Interactive
Computer Controlled Instructional Television) (Bunderson, 1972). In the
following paragraphs, some features of these systems are noted and compared
with those of the GTDS.

Portability and Implementation Options

Two of the systems, PLATO and TICCIT, are very machine dependent and
not at all transportable across computers. PLANIT, however, is now written
In a subset of FORTRAN IV which is nearly universal across large, multi-
purpose machines and is supposed to be highly portable. In comparison,
GTDS contains some software which is directed at particular student-station
hardware components such as the Votrax speech synthesizer and Tektronix
graphics display. However, the system will run with little or no modification
using other terminals if limited to alphanumeric I/O (which is all that
PLANIT supports). Because its software has been developed in assembly
language and PL/I, GTDS cannot be transported to machines other than IBM
360 and 370 series, these machines comprise a large subset of the world's
computers.

Portability is affected not only by the language(s) employed in
system development but also by the overall dependency between software and
hardware insofar as core and other machine requirements are concerned,
TICCIT is configured for implementation on dedicated minicomputers. No
other implementation is possible. PLATO, on the other hand, demands all
the resources of a very large computer. It, too, requires a dedicated system,
but, in this case, an extremely large and expensive one. PLANIT, presumably,
can be run on any computer which supports FORTRAN IV and interactive, on-line
utilization.

GTDS can be implemented on virtually any IBM 360 or 370. As dis-
cussed below, it would find the environment of a large time-sharing instal-
lation very hospitable. On the other hand, it can support a limited number
of terminals on a middle-size machine such as the 360/50 at San Diego State
without degrading overall system performance. A third alternative would be
to use a small 370 in a dedicated capacity. It is quite likely that such a
GTDS configuration would be cost effective vis a_ vis various minibased
systems for supporting 20 to 40 terminals. Modular expansion of such a system
would be possible through duplication but expansion through moving to a larger
central processor would probably be more desirable.

Thus, while GTDC does not exhibit the high degree of transportability
claimed for PLANIT, it provides a much greater range of implementation options
than either PLATO or TICCIT. It is the only one of the systems under discussion
to offer any options as far as size and dedication of central processor are
concerned, while still providing significant innovative features such as graphics,
slide projection, and audio output.

Courseware Development

Two of the systems, PLATO and PLANIT, are designed for on-line author-
ing of courseware by content area specialists, i.e., instructors. TICCIT—by
virtue of its use of primarily television technology—requires the services
of a team of specialists for courseware development. GRAIL is designed for
authoring either by individual researchers or instructors, or else by pro-
grammers or coders supervised by such content area specialists. GRAIL is
somewhat more complicated than PLANIT by virtue of the greater richness of
the language but no more difficult to use effectively than TUTOR, the author
language of the PLATO System. PLANIT is extremely limiting in terms of
courseware organization because of its orientation to frames and limitation
to only four frame types.

The GTDS, in its current implementation at San Diego State University,
does not support on-line courseware development, but it must be emphasized
that this is a limitation of this particular implementation and not a limi-
tation of the basic system design. There is no reason as far as GTDS soft-
ware is concerned why courseware cannot be written on-line and submitted for
compilation by conversational remote job entry (CRJE). Any on-line, general-
purpose text editor is adequate for course authoring and any means of deliver-
ing the machine-readable code to the compiler is acceptable. Neither on-line
authoring and editing nor CRJE involve more than trivial modifications to
GTDS. They depend on system software external to GTDS. Even on-line compila-
tion, requires little or no change in GTDS. However, it does require either
a much larger partition of dedicated core than is now available to GTDS at
San Diego State or implementation on a large IBM 360 or 370 which supports
one or the other of IBM's timesharing systems. In such an environment, the
GRAIL author would be able to write and debug courseware interactively much
as can be done with PLATO or PLANIT. The major differences in course develop-
ment would result from both the enforced modularity of GRAIL courseware and

10

the fact that actual machine code is generated. The former means that
recompilation of a small number of sections (probably one) would be required
to correct a programming error and the latter implies that those debugging
features common in interpretive systems (i.e., single statement recompilation,
arbitrary execution time tracing, etc.) are absent in GRAIL. This is a small
price to pay for the efficiencies of the modular, reentrant, machine code
produced by the GRAIL compiler.

Cost

Cost, per se, was not a major consideration in the determination of
GTDS hardware selection. The primary thrust has been to provide the graphics
and other functional capabilities required for R&D activities and not to
design a terminal capable of delivering CAI at a minimal cost. Having developed
a good CAI package, however, one may speculate about how it might economically
be delivered in quantity.

The most expensive component in the GTDS student station, by far, is
the Tektronix Graphic Display Terminal. This is a fine device, but the
plasma display panel used in the PLATO terminal may ultimately be cheaper
in quantity. However, current costs estimates for PLATO student terminals are
quite comparable in cost. The cost per unit of Votrax synthesizer should
also be less in large quantity. A cheaper GTDS terminal, then, might be
designed much like the PLATO terminal but would include an additional component—
the speech synthesizer. At present, however, there is no inexpensive hard-
copy device to accompany the plasma display panel.

All in all, given the freedom of choice with regard to size of computer
main frame and selection of operating system (within the IBM 360 or 370 series),
its unique graphics and speech capabilities, and the very modest cost of develop-
ment—relative to the others, the GTDS System is a bargain in comparison to
PLANIT, PLATO, or TICCIT and well suited to R&D applications. If high-quality
graphics are required, it should even be competitive for operational CAI
activities.

Potential Growth and Development

As discussed in the section on the GRAIL author language (pp. 1-2), even
though the language contains constructs oriented to the particular needs at
NAVPERSRANDCEN (graphics, speech, etc.), it is still very general. The control
statements, FORTRAN subroutine capability, and macro definition capability—
in particular—make it both powerful and flexible.

In the absence of graphics requirements, GTDS could support a substantial
number of terminals very efficiently on a small IBM System 370 machine. With
an intermediate machine such as the 360/50 in the San Diego State University
implementation, predefined graphics displays are possible. On a very large
machine, on-line graphics could be incorporated.

11

There are very few restrictions on the options for expansion or change
of the system, in fact, because of adherence to the principles of struc-
tured programming in the development of the software package. Modularity
and the isolation of operating-system-dependent modules, in particular,
will facilitate desired adaptations. The fact that the GRAIL compiler is
written in assembly language does constrain utilization of the system to
IBM 360 and 370 series machines but this is the least restriction possible
in writing a compiler to produce machine-code programs. Run-time (ineffi-
ciency is a major problem with many CAI systems and is best avoided by the
use of reentrant, compiled code as in the GTDS.

Commitments to the particular hardware of the present student-station
configuration are built into GTDS, but these commitments are not irrevo-
cable. Software support of the Tektronix terminal, for instance, is speci-
fic to that device to some extent, but the graphics support is independent
of the rest of the system.

RECOMMENDATIONS

Although current plans do not include any substantial enhancements of
the GTDS, there is still room for improvement. For example, little has been
done to accommodate various kinds of data structures (e.g., matrices and
lists) directly in GRAIL, and there is virtually no list-processing capability
either in GRAIL or in FORTRAN. Development and inclusion of dynamic data
definition support and list-processing instructions would greatly enhance the
ability of CAI researchers to draw on the contributions of those in the
artificial intelligence (AI) community who are addressing relevant problems.
Recent advances in natural-language processing, for instance, tend to be
manifest in programs developed in LISP or closely related list-processing
languages. The potential for substantial and worthwhile improvements in CAI
technology are latent in much contemporary AI research, but it will require
some effort from those directly concerned with CAI R&D to capitalize on them.
The availability of a CAI language which can accommodate the manipulation
and evaluation of LISP-like symbolic expressions would certainly help.

In view of the above, it is recommended that GTDS be enhanced so that it
can be used for a broad range of Navy training and R&D applications.

12

REFERENCES

Bennick, F. D. & Frye, C. H, PLANIT Language Reference Manual, Control
Data Corporation, No. X0010422, System Development Corporation, 1970.

Bitzer, D. L. & Johnson, R. L. PLATO: A computer-based system used in
the engineering of education. Reprint from the Proceedings of the IEEE,
59 (6), 1971.

Bunderson, C. V. Team production of learner-controlled courseware: A
progress report. Institute for Computer Uses in Education, Brigham Young
University, Provo, Utah, November, 1972.

13

APPENDIX

GRAPHIC TERMINAL DISPLAY
SYSTEM EXTERNAL
DOCUMENTATION

15

GRAPHIC TERMINAL DISPLAY SYSTEM EXTERNAL DOCUMENTATION

EXTERNAL DOCUMENTATION CONTENTS

1. GTDS CONCEPTS AND FACILITIES

2. GRAIL LANGUAGE SPECIFICATIONS 4
2.1. NOTATION 4
2.2. SYNTAX 4
2.3. SYNTACTIC VARIABLES 12

3. GRAIL FUNCTIONS 13

4. EXECUTION VARIABLES 13

5. GRAPHICS: TERMINAL CONTROL SYSTEM 19
5.1. VIRTUAL GRAPHICS „ . . 19

5.1.1. THE VIRTUAL DISPLAY 19
5.1.2. WINDOWING . 19
5.1.3. ABSOLUTE VECTORS <, . 21
5.1.4. RELATIVE VECTORS 22
5.1.5. SCALING AND ROTATING 24

5.2. DIRECT GRAPHICS o 25
5.2.1. THE SCREEN <, 25
5.2.2. ABSOLUTE VECTORS 25
5.2.3. RELATIVE VECTORS 27

6. MACRO DEFINITION LANGUAGE 29
6.1. STATEMENTS 29
6.2. SYSTEM VARIABLE SYMBOLS 30
6.3. FEATURES 30

6.3.1. SUBLIST NOTATION 30
6.3.2. SUBSTRING NOTATION 30

6.4. ATTRIBUTES 30

7. PHONETIC INPUT DATA FORMAT 32
7.1. VOTRAX 32

8. GRAIL CODING CONVENTIONS 43

9. GRAIL COMPILER ERROR MESSAGES 35

17

GTDS EXTERNAL DOCUMENTATION

1. GTDS CONCEPTS AND FACILITIES

GTDS - CONCEPTS AND FACILITIES

GTDS HAS THE GENERAL DESIGN GOAL OF SUPPORTING RESEARCH
IN COMPUTER ASSISTED INSTRUCTION.

THE FOLLOWING SUBSYSTEMS PROVIDE THIS SUPPORT:

GRAIL GRAPHIC ASSISTED INSTRUCTIONAL LANGUAGE

GRAIL IS THE 'AUTHOR LANGUAGE1 IN THE GTDS SYSTEM
AND PROVIDES THE FOLLOWING FEATURES:

- DISPLAY OF ALPHANUMERIC AND/OR GRAPHIC INFORMATION.
UPPER AND LOWER CASE ALPHANUMERICS MAY BE MIXED
(ALONG THE GRAPHIC INFORMATION) IN THE SAME DISPLAY.

- SELECTION AND DISPLAY OF ANY ONE OF EIGHTY SLIDES LOCATED
IN THE RANDOM ACCESS SLIDE PROJECTOR.

- CONTROL OF THE SEQUENCE OF PRESENTATION AND ANALYSIS, BOTH
ON LOGICAL CONDITION TESTING AND INTERATIVELY. LOGICAL
COMBINATIONS (AND,OR) OF RELATIONAL (EQUAL TO, NOT EQUAL,
LESS THAN, ETC.) EXPRESSIONS, WITH GROUPING (INDICATED
VIA PARENTHESIS) IS ALLOWED.

- INPUT FROM THE TERMINAL INCLUDES UPPER AND LOWER CASE
ALPHANUMERIC AS WELL AS THE ABILITY TO DETERMINE THE
CURRENT POSITION OF THE CROSSHAIR CURSOR.

- A SIGNIFICANT LEVEL OF 'COMPILE TIME' CHECKING INCLUDING
- CHECKS FOR PROPER 'NESTING' OF CONSTRUCTS, I.E.,

IF ONE CONSTRUCT MUST BE WHOLLY CONTAINED WITHIN
ANOTHER, THEN AN ERROR MESSAGE RESULTS IF THE AUTHOR
VIOLATES THE RESTRICTION.

- CHECKS FOR PROPER DATA TYPES, FOR EXAMPLE: A
CHARACTER STRING VARIABLE USED IN AN ARITHMETIC
EXPRESSION IS INVALID.

ALTHOUGH THE ABOVE FEATURES ARE ALMOST ALWAYS ENCOUNTERED
IN CAI AUTHOR LANGUAGES, THE FOLLOWING ARE RELATIVELY UNIQUE:

- REENTRANT CODE, WHICH ALLOWS SEVERAL STUDENTS TO BE
'TAUGHT' USING THE SAME MACHINE INSTRUCTIONS, THEREBY
SAVING STORAGE.

19

EXTERNAL DOCUMENTATION

- EXPRESSIONS (CHARACTER AND ARITHMETIC) ARE ALLOWED VIRTUALLY
ANYWHERE A VARIABLE CAN OCCUR.

- EXTENSIBLE LANGUAGE FACILITY. THE MACRO DEFINITION
LANGUAGE (MDL) IS AN INTEGRAL PART OF GRAIL AND ALLOWS
ADDITIONAL OPERATIONS AND CONSTRUCTS TO BE ADDED TO THE
LANGUAGE BY THE AUTHOR. THE MDL ALLOWS THE AUTHOR TO HAVE
VIRTUALLY COMPLETE FREEDOM IN THE SELECTION OF BASIC
OPERATIONS TO BE USED IN TEACHING A COURSE.

- DYNAMIC STORAGE ALLOCATION. MAIN (CORE) STORAGE IS
ALLOCATED ONLY WHEN THE STRUCTURE REQUIRING IT IS ENTERED,
THUS REDUCING MAIN STORAGE USE.

- PORTABILITY. ALL OPERATING SYSTEM DEPENDENT CODE IS
ISOLATED INTO ONE AREA, ALLOWING EASY CONVERSION TO ANY
OPERATING SYSTEM WHICH RUNS ON THE IBM 360-370 SERIES
OF COMPUTERS.

- GENERATION OF MACHINE CODE
ACTUAL 'MACHINE CODE1 (COMPUTER INSTRUCTIONS) ARE
GENERATED BY GRAIL. THIS IS TYPICALLY 5 TO 10 TIMES
FASTER IN EXECUTION THAN 'INTERPRETIVE1 SYSTEMS.

- SUPPORT OF "STRUCTURED" PROGRAMMING CONCEPTS
- ENFORCED MODULARITY OF PROGRAMS - THE COMPILER

WILL NOT ACCEPT A SOURCE PROGRAM OF MORE THAN 200
SOURCE STATEMENTS.

- THE GRAIL LANGUAGE DOES NOT
CONTAIN A "GOTO" STATEMENT, ALTHOUGH PROVISION
IS MADE FOR EARLY TERMINATION OF LOOPING
CONSTRUCTS.

- TRANSPARENT OVERLAYING OF SUBROUTINES IN SUCH A
WAY THAT THE AUTHOR NEED NOT WORRY ABOUT STORAGE
MANAGEMENT AT ANY TIME.

EXCALIBUR EXTRACT AND COLLECT LOGICALLY INDICATED USER RECORDS

EXCALIBUR PROVIDES FOR THE COLLECTION, MAINTENANCE, AND
SELECTION OF AUTHOR SELECTED INFORMATION WITH THE FOLLOWING
FEATURES:

- AUTHOR CONTROLLED RECORDING AT ANY TIME, IN
ADDITION TO RECORDING STUDENT LOGON, LOGOFF TIMES.

- FORTRAN (AS WELL AS PL/1, COBOL, AND ASSEMBLER)
COMPATIBLE RECORDS, ALLOWING DATA ANALYSIS TO BE DONE
ON ANY MACHINE SUPPORTING MAGNETIC TAPE AND FORTRAN.

- EASY SELECTION OF RECORDS FOR FURTHER ANALYSIS
THROUGH VERY SIMPLE PL/1 PROGRAMS.

20

GTDS EXTERNAL DOCUMENTATION

2. GRA.IL LANGUAGE SPECIFICATIONS

2.1. NOTATION

SYNTACTIC VARIABLES:
ANYTHING BEGINNING WITH THE CHARACTER '@' IS REPLACED
BY THE FORM INDICATED FOR THE VARIABLE
UNDER 'DEFINITIONS'.

METASYMBOLS:
THE CHARACTERS ' (APOSTROPHE), '<», !>f, AND '/' ARE TO
BE TREATED AS METASYMBOLS UNLESS THEY ARE ENCLOSED IN
APOSTROPHES. THEY HAVE THE FOLLOWING MEANINGS:

<,> ARE USED TO INDICATE THAT THE ENCLOSED FORM IS OPTIONAL
AND MAY BE OMITTED AT THE USER'S DISCRETION.

/ INDICATES THAT A CHOICE MUST BE MADE AMONG THE ALTERNATIVE
FORMS WHICH IT SEPARATES; IF A DEFAULT IS ALLOWED, IT PRECEEDS
THE FIRST /, UNLESS OTHERWISE INDICATED BY THE TEXT.

THE FORM ',...* INDICATES THAT THE PRECEDING
FORM MAY BE REPEATED A NUMBER OF TIMES (AS SPECIFIED
IN THE TEXT) WITH EACH FORM SEPARATED BY COMMAS.

THE FORM '...' INDICATES THAT THE PRECEDING
SYNTACTIC VARIABLE MAY BE REPEATED A NUMBER OF TIMES.

PARENTHESIS '(' AND ')' ALWAYS INDICATE THAT ACTUAL
PARENTHESES OCCUR, AND IN THE FORM <(> FORM <)>, EITHER
BOTH PARENTHESES MUST BE PRESENT OR BOTH OMITTED.

APOSTROPHES INDICATE THAT THE ENCLOSED CHARACTER
OR CHARACTERS ARE TO BE TREATED AS THEMSELVES AND
NOT AS METASYMBOLS; THUS, THE FORM '" INDICATES
AN ACTUAL *SINGLE* APOSTROPHE - ' AND '/'AN
ACTUAL SLASH, ETC.

2.2. SYNTAX

(aOLABLE TEXT (<'@TEXTSTRING' / @CEXP >,...),
<POSIT=(<@FEXP-1<>,@FEXP-2<)<,
>,CRLT=YES / NO>

21

GTDS EXTERNAL DOCUMENTATION

CAUSES THE INDICATED STRINGS OF CHARACTERS TO BE
DISPLAYED. IF NEITHER @FEXP-1 OR @FEXP-2 IS SPECIFIED
THE STRING WILL BE DISPLAYED AT THE CURRENT ALPHA-
CURSOR POSITION.
IF THE POSIT PARAMETER IS SPECIFIED, @FEXPR-1 INDICATES
THE LINE WHERE THE DISPLAY IS TO BEGIN AND @FEXPR-2
THE POSITION WITHIN THE LINE WHERE THE FIRST CHARACTER
IS TO BE DISPLAYED. IF @FEXPR-1 IS OMITTED, THE CURRENT
LINE IS ASSUMED AND IF @FEXPR-2 IS OMITTED IT IS ASSUMED
TO BE 1.
IF THE VALUES SPECIFIED EXCEED THEIR RESPECTIVE
MAXIMUM VALUES THEN THE MAXIMUM VALUE IS USED
INSTEAD. THESE MAXIMUMS ARE SPECIFIED BY THE
EXECUTION VARIABLES $FMLIN AND $FMPOS FOR
@FEXP-1 AND @FEXP-2 RESPECTIVELY.

IF THE VALUE OF EITHER OF THE POSIT=
PARAMETERS IS EITHER ZERO OR NEGATIVE THEN THAT
PARAMETER IS TREATED EXACTLY AS IF IT WERE NOT
SPECIFIED.
REGARDLESS OF THE POSIT= PARAMETER (OR IN IT'S
ABSENCE) THE ALPHA-CURSOR IS MOVED TO THE FIRST
CHARACTER OF THE NEXT LINE AFTER THE CHARACTERS ARE
DISPLAYED, UNLESS THE CRLF=NO PARAMTER IS USED, IN
WHICH CASE THE ALPHA-CURSOR WILL BE LEFT AT THE
POSITION IMMEDIATELY FOLLOWING THE LAST CHARACTER
DISPLAYED.

0OLABLE TALK (^VOCAL-FORM,. ..)
THE @VOCAL-FORMS ARE VOCALIZED IN THE ORDER CODED.
THE VARIOUS ^VOCAL-FORMS ARE INTERPRETED AS FOLLOWS-

@PHON-LIT (PHONEMIC LITERAL)

THE @PLIT'S AND @UFLIT ARE CONVERTED AT *COMPILE*
TIME TO THE »INTERNAL» PHONEME FORM AND ARE VOCALIZED
EXACTLY AS CODED DURING EXECUTION-*NO* PAUSES
ARE INSERTED, AND THE SPECIFIED INFLECTIONS ARE
NOT MODIFIED.
THE @PHON-LIT MUST FOLLOW THE FORMAT DETAILED UNDER
»PHONETIC INPUT DATA FORMAT'.

@ WORD-FORM

EACH @CLIT IS 'LOOKED UP» IN THE VOTRAX DICTIONARY
FILE (VDF) AND CONVERTED TO ITS 'INTERNAL' PHONEME
FORM AT ^COMPILE* TIME AND A WORD PAUSE (PAI)
INSERTED * AFTER* EACH WORD.

22

IF THE SPECIAL CHARACTERS ',' ,';' OR f.• OCCUR AS
THE *SOLE* CHARACTER IN A @CLIT THEN A PAI, PA2,
AND PA3 ARE GENERATED, RESPECTIVELY.
IF f ?f OCCURS AS THE *LAST* @CLIT THEN THE INFLECTIONS
OF THE PRECEDING WORD ARE MODIFIED TO GENERATE A
'RISING INFLECTION1 IF POSSIBLE. IF THE '?' IS NOT
THE LAST @CLIT IN THE STATEMENT, OR IF IT IS THE
ONLY @CLIT THEN AN ERROR MESSAGE RESULTS.
THE FOLLOWING RESTRICTIONS ON THIS FORM SHOULD BE
NOTED-

THE @CLIT*S MUST BE SPECIFIED AS LOWER CASE- IE
THE '@' OR ,@@» NOTATION NORMALLY AVAILABLE IN
@CLITfS MAY *NOT* BE USED.
EACH @CLIT MUST BE A SINGLE ENGLISH WORD WHICH
IS PRESENT AT *COMPILE* TIME IN THE VDF.

@TEXT-FORM

@CEXP IS EVALUATED DURING * EXECUTION* AND THE FIRST
SIX CHARACTERS SHOULD NAME A 'VOCAL TEXT'. IF
PRESENT, @FEXP IS EVALUATED AND USED TO SELECT A
'SEGMENT1 OF THE VOCAL-TEXT. IF @FEXP IS OMITTED
OR ZERO THEN THE ENTIRE VOCAL-TEXT IS VOCALIZED;
OTHERWISE ONLY THE INDICATED VOCAL-TEXT SEGMENT IS
VOCALIZED.

@PHON-VAR (PHONEMIC VARIABLE)

THE RESULT OF EVALUATING @CEXP IS ASSUMED TO BE A
STRING IN 'INTERNAL' PHONEME FORM AND IS THEREFORE
VOCALIZED *EXACTLY* AS PRESENTED.
IF CHARACTERS OF THE BIT CONFIGURATION 'XX111111'
ARE PRESENT IN THE STRING, THEY ARE CONVERTED TO
PAl'S TO AVOID TIMING PROBLEMS.

THE 'INTERNAL' PHONEME CODES RESULTING FROM
EVALUATING THE FORMS PRESENT IN THE TALK STATEMENT
ARE CONCATENATED AND PRESENTED TO THE AUDIO UNIT
IN 63 CHARACTER 'CHUNKS' (OR LESS IF THE TOTAL IS
FEWER THAN 63) FOLLOWED BY THE 'SPEAK' CODE.
LOADING OF THE NEXT 'CHUNK' OCCURS WHILE THE
FIRST 'CHUNK» IS BEING VOCALIZED, SO THAT (WITH
PROPER PLANNING) CONTINUOUS SPEECH IS ACHIEVED.

(30LABEL SHOW (@FEXP)
THE SLIDE SPECIFIED BY @FEXP IS
SELECTED AND DISPLAYED ON THE RANDOM ACCESS SLIDE
PROJECTOR. IF @FEXP IS GREATER THAN THE MAXIMUM
VALID SLIDE NUMBER FOR THE TERMINAL THEN THE COMMAND
IS IGNORED. IF THE TERMINAL DOES NOT HAVE A SLIDE
PROJECTOR (AS INDICATED BY THE EXECUTION VARIABLE
$CRASP) THEN THE COMMAND IS IGNORED.

23

EXTERNAL DOCUMENTATION

GOLABEL HDCPY

@OLABEL FCALL

A PRINTED COPY OF THE CURRENT SCREEN IS MADE. IF
THE STUDENT STATION IS NOT EQUIPPED WITH A HARD
COPY UNIT THE STATEMENT IS IGNORED.

@FORNAME, (@EXP-l,EXP-2,EXP-3,...)
THE FORTRAN SUBROUTINE IDENTIFIED BY @FORNAME IS CALLED
WITH THE ARGUMENTS SPECIFIED BY @EXP-l,@EXP-2...
THE SUBROUTINE CALLED MUST BE KNOWN TO THE SYSTEM OR
AN ERROR MESSAGE WILL RESULT DURING COMPILATION.
IT IS THE USER'S RESPONSIBILITY TO ENSURE THAT THE
TYPES OF THE ARGUMENTS PASSED AGREE WITH THE TYPES
EXPECTED BY THE SUBROUTINE.

@OBABEL FXEC «aCEXP)<,(@EXP-1,@EXP-2,...)>
THE SECTION IDENTIFIED BY THE FIRST 6 CHARACTERS
OF THE RESULT OF EVALUATING @CEXP IS EXECUTED ,
AFTER WHICH CONTROL RETURNS TO THE NEXT STATEMENT
IF THE RESULT IS LESS THAN SIX CHARACTERS , THEN
IT IS PADDED WITH TRAILING BLANKS. THE @EXP'S ARE
EVALUATED AND PASSED TO THE INVOKED SECTION AS
ARGUMENTS. SEE THE DESCRIPTION OF 'SECTION1 FOR
ADDITIONAL CONSIDERATIONS.

@LABEL SECTION <@VAR-1< @UFLITx,@VAR-2< @UFLIT>>... <@VAR-lO
< @UFLIT>>>

DEFINES THE BEGINNING OF A SECTION AND DEFINES AND
IDENTIFIES THE VARIABLES USED TO CONTAIN ARGUMENTS.
WHEN CONTROL ENTERS A 'SECTION1 STATEMENT THE FOLLOWING
ACTIONS OCCUR:

1. ALL VARIABLES DEFINED BY VDEF STATEMENTS ARE
INITIALIZED TO NULL OR ZERO.

2. THE VALUES DEFINED IN THE 'EXEC' STATEMENT
ARE MOVED TO THE CORRESPONDING (BY POSITION)
VARIABLE IN THE 'SECTION' STATEMENT. IN THE
CASE OF A CHARACTER VARIABLE WHERE THE
RECEIVING FIELD IS SHORTER THAN THE SENDING
FIELD, THE EXCESS CHARACTERS ARE LOST.

3. CONTROL PASSES TO THE NEXT STATEMENT.

THE FOLLOWING RESTRICTIONS SHOULD BE OBSERVED:
1. THE NUMBER OF ARGUMENTS SPECIFIED IN THE 'EXEC'

STATEMENT WHICH INVOKES A SECTION MUST BE
EXACTLY EQUAL TO THE NUMBER OF ARGUMENTS
SPECIFIED IN THE 'SECTION' STATEMENT.

24

EXTERNAL DOCUMENTATION

2. THE TYPE (C, E, OR F) OF EACH ARGUMENT PASSED
MUST AGREE WITH THE TYPE OF THE VARIABLE IN THE
CORRESPONDING POSITION IN THE »SECTION1 STATE-
MENT.

3. THE ARGUMENTS PASSED MAY INCLUDE LITERALS,
EXECUTION VARIABLES, CONSTRANTS DEFINED BY A
TCDEFf STATEMENT AND/OR NON-ATOMIC EXPRESSIONS
- BUT THE VALUE OF THE CORRESPONDING VARIABLE
IN THE 'SECTION1 STATEMENT MUST NOT BE CHANGED
WITHIN THE SECTION.

SEND (3MLABEL
CONTROL RETURNS TO THE UNIT WHICH INVOKED THE SECTION
BEING ENDED. THE VALUES OF THE ARGUMENTS WHICH WERE
PASSED TO THE SECTION ARE UPDATED (CHARACTER STRING
VALUES ARE TRUNCATED IF NECESSARY).

(§LABEL COURSE
DEFINES A COURSE WITH THE INDICATED NAME ,
CAUSES STORAGE TO BE ALLOCATED FOR VARIABLES DEFINED IN
THE COURSE AND THE SCREEN TO BE ERASED. $CRSE IS
SET TO @LABEL AND $CSECT IS SET TO NULL.

CRSEND @MLABEL
DEFINES THE END OF A COURSE AND CAUSES ALL STORAGE
ALLOCATED FOR THE COURSE TO BE RELEASED.

@LABEL IF (@CON-CLS)
THFN <NULL>
ELSE <NULL>
IEND @MLABEL

THESE FOUR OPERATIONS ALLOW FOR THE CONDITIONAL
EXECUTION OF SUBSEQUENT STATEMENTS AS FOLLOWS -

1. IF (3CON-CLS IS TRUE , THE STATEMENTS BETWEEN THE
THEN AND ELSE OPERATIONS ARE EXECUTED , AFTER WHICH
CONTROL PASSES TO THE STATEMENT FOLLOWING THE IEND

2. IF (3COS-CLS IS FALSE , THE STATEMENTS BETWEEN THE
ELSE AND IEND ARE EXECUTED , AFTER WHICH CONTROL
PASSES TO THE STATEMENT FOLLOWING THE IEND.

3. NO STATEMENTS MAY OCCUR BETWEEN THE IF AND THEN
OPERATIONS.

25

EXTERNAL DOCUMENTATION

4. IF THE 'NULL' OPTION IS SPECIFIED FOR A THEN OR ELSE
OPERATION , AND IF CONTROL IS PASSED TO IT BY THE IF
OPERATION p THE CONTROL IMMEDIATELY PASSES TO THE
STATEMENT FOLLOWING THE IEND.

5. IF CONSTRUCTS MAY BE 'NESTED' , THAT IS - AN IF
CONSTRUCT MAY OCCUR BETWEEN THE THEN AND ELSE , OR ELSE
AND IEND , OPERATIONS OF ANOTHER IF CONSTRUCT.

6. ALL FOUR OPERATIONS COMPRISING THE IF CONSTRUCT ARE
REQUIRED WHEN THE CONSTRUCT IS USED.

@IABEL DO WHILE / UNTIL, (@CON-CLS)
< STATEMENTS >
DEND @MLABEL

THESE TWO OPERATIONS ALLOW FOR THE REPETITIVE EXECUTION
OF A GROUP OF STATEMENTS AS FOLLOWS -

WHEN CONTROL ENTERS THE DO STATEMENT, THE VALUE OF
@CON-CLS IS TESTED. IF IT IS TRUE (FALSE) AND THE
WHILE (UNTIL) FORM WAS USED, THEN THE STATEMENTS
BETWEEN THE DO AND DEND ARE EXECUTED, AFTER WHICH
CONTROL AGAIN ENTERS THE DO STATEMENT.
WHENEVER CONTROL ENTERS THE DO STATEMENT AND
@OON-CLS IS FALSE (TRUE) AND THE WHILE (UNTIL) FORM WAS
USED, THEN CONTROL PASSES TO THE STATEMENT
FOLLOWING THE DEND. .

@LABEL DOINC (3FVAR, (@FEXP-1) ,TO, (@FEXP-2)<,BY, (@FEXP-3>)
DODEC
< STATEMENTS >
DEND @MLABEL

WHEN CONTROL ENTERS THE DOINC (DODEC) STATEMENT
@FEXP-1 IS EVALUATED AND ASSOGNED TO @FVAR;
(3FEXP-2 IS EVALUATED AND SAVED;
@FEXP-3 IS EVALUATED AND SAVED (IF @FEXP-3
IS OMITTED IT IS ASSUMED EQUAL TO ONE).
@FVAR IS NOW COMPARED TO @FEXP-2, AND IF @FVAR IS
GREATER THAN (LESS THAN) @FEXP-2 THEN CONTROL PASSES TO
THE STATEMENT FOLLOWING THE DEND. IF @FVAR IS LESS
THAN OR EQUAL (GREATER THAN OR EQUAL) TO
@FEXP-2 THEN THE STATEMENTS
BETWEEN THE DOINC (DODEC) AND THE DEND STATEMENT ARE
EXECUTED. WHEN CONTROL ENTERS THE DEND STATEMENT
THE SAVED EVALUATION OF @FEXP-3 IS ADDED TO
(SUBTRACTED FROM) @FVAR. CONTROL IS THEN TRANSFERRED
TO THE POINT IN THE DOINC (DODEC) WHERE @FVAR IS
COMPARED TO @FEXP-2 AND THE ABOVE PROCESS IS
REPEATED.

26

GTDS EXTERNAL DOCUMENTATION

@LABEL CASES @FLIT<,EXE0=FIRST / ALL>
CASE (@C0N-CLS-1)
< STATEMENTS >
CASE (@C0N-CLS-2)
< STATEMENTS >
CASE

CASE (@CON-CLS-@FLIT)
< STATEMENTS >
CEND @MLABEL

THE CASES CONSTRUCT ALLOWS SELECTION OF GROUPS
OF STATEMENTS TO BE EXECUTED BASED UPON THE
LOGICAL VALUES OF CONDITIONAL CLAUSES. WHEN THE
CASES STATEMENT IS ENTERED THE @CON-CLS OF EACH
CASE STATEMENT IN THE CONSTRUCT IS EVALUATED,
BEGINNING WITH THE FIRST. IF THE @CON-CLS OF
ANY PARTICULAR CASE STATEMENT IS TRUE THEN THE
STATEMENTS BETWEEN THAT CASE STATEMENT AND THE
NEXT CASE OR CEND STATEMENT OF THE CONSTRUCT
ARE EXECUTED. IF THE EXEOALL OPTION IS SPECIFIED
THEN THE EVALUATION OF EACH @CON-CLS CONTINUES;
IF THE EXEC EXEOFIRST OPTION IS SPECIFIED THEN
ONLY THE STATEMENTS BETWEEN THE FIRST CASE
STATEMENT WHICH EVALUATED TO TRUE AND THE NEXT
CASE OR CEND STATEMENT WILL BE EXECUTED.
WITH EITHER EXEC OPTION AT LEAST ONE @CON-CLS
MUST BE TRUE OR EXECUTION OF THE COURSE WILL
BE TERMINATED WITH AN ERROR.
@FLIT IS USED TO SPECIFY THE NUMBER OF CASE
STATEMENTS WITHIN THE CURRENT CASES CONSTRUCT AND
MUST BE EXACTLY EQUAL TO THE NUMBER OF CASE
STATEMENTS. @FLIT MUST BE LESS THAN 100.

@LABEL READ <@CVARx,POSIT« (<@FEXP-1><, @FEXP-2>)>
CAUSES CHARACTERS TO BE READ FROM THE TERMINAL INTO
@CVAJU IF MORE CHARACTERS ARE ENTERED THAN @CVAR CAN
HOLD, THEY ARE LOST. IF @CBAR IS OMITTED THEN THE
EXECUTION VARIABLE $CANS IS USED AND HAS A MAXIMUM
LENGTH OF 72. IF THE POSIT* OPTION IS SPECIFIED THEN
THE ALPHA-CURSOR IS MOVED TO THE INDICATED POSITION
ON THE SCREEN BEFORE INPUT IS ACCEPTED (SEE 'TEXT').

27

EXTERNAL DOCUMENTATION

(30LABEL CALC @VAR, ((§EXP)
@EXP IS EVALUATED AND ASSIGNED TO @VAR. @EXP AND @VAR
MUST BE ON THE SAME TYPE.

@LABEL READCC <@FVAR-l><,@FVAR-2x,@CVAR>
THE CROSSHAIR CURSOR IS ILLUMINATED AND ITS X-Y
COORDINATES ARE READ WHEN THE NEXT CHARACTER IS TYPED
BY THE USER. THE X VALUE , THE Y VALUE AND THE
CHARACTER TYPED ARE READ INTO @FVAR-l,@FVAR-2 AND
@CVAR RESPECTIVELY. IF ANY (OR ALL) OF THE OPERANDS
ARE OMITTED , THE VALUES ARE READ INTO THE EXECUTION
VARIABLES $FCCX , $FCCY AND $CCHR RESPECTIVELY.
NOTE THAT THE X AND Y VALUES READ ARE IN SCREEN
COORDINATES AND THAT THE RESULTING LENGTH OF @CVAR
(OR $CCHR) WILL ALWAYS BE ONE.

(3LABEL RECORD (@CEXP),TYPE=(@CEXP)
@CEXP-l,@CEXP-2,... ARE CONCATENATED AND WRITTEN
ON THE RECORDER FILE. THE RECORD IS IDENTIFIED BY THE
FIRST TWO CHARACTERS OF THE CHARACTER STRING
RESULTING FROM EVALUATION OF THE @CEXP SPECIFIED
FOR TYPE. IT IS THE USER'S RESPONSIBILITY TO ENSURE
THAT THE RESULTING RECORD HAS THE CORRECT FORMAT FOR
ITS TYPE, AND THAT THE TYPE ITSELF IS VALID.

@OBALED DELAY (@FEXP)
EXECUTION OF SUBSEQUENT OPERATIONS IS DELAYED BY THE
SPECIFIED NUMBER OF SECONDS,

@LABEL ESCAPE @MLABEL
THIS COMMAND ALLOWS EXIT FROM WITHIN A NEST OF 'IF1

, 'DO' , 'DODEC' , 'DOINT' , 'COURSE* , »SECTION1

AND/OR »CASES' CONSTRUCTS. WHEN CONTROL ENTERS THE
ESCAPE STATEMENT THE DEND, IEND, CRSEND, SEND OR CEND
HAVING THE MATCHING @MLABEL WILL BE THE NEXT STATE-
MENT EXECUTED.
NOTE THAT THE STATEMENT HAVING THE MATCHING @MLABEL
MUST BE WITHIN THE ACTIVE NEST AT THE
TIME THE ESCAPE STATEMENT IS EXECUTED.

LIMIT @FLIT
THE LIMIT STATEMENT IS USED TO SPECIFY AN UPPER
BOUND ON HOW MANY TIMES THE STATEMENTS WITHIN A
'DO' . »DODEC OR 'DOINC' MAY BE EXECUTED.

28

EXTERNAL DOCUMENTATION

@OLABEL ERASE

IF NO LIMIT STATEMENT IS PRESENT THEN EACH SUCH
CONSTRUCT IS LIMITED TO 100 REPETITIONS. IF A LIMIT
STATEMENT IS PRESENT, THEN THE NEXT (AND *ONLY* THE
NEXT) 'DO', 'DOINC' OR 'DODEC'
CONSTRUCT IN THE SOURCE PROGRAM WILL BE LIMITED TO
@FLIT REPETITIONS. @FLIT MAY BE LESS THAN 100
BUT MUST BE GREATER THAN ZERO.

THE SCREEN IS ERASED. IF THE TERMINAL IS NOT CAPABLE
OF BEING ERASED THEN THE STATEMENT HAS NO EFFECT.

VTYPE C(@L-l,@U-l),F(@L-2,@U-2),E(@L-3,(aU-3)
THIS OPERATION IS USED TO INDICATE THAT ANY VARIABLE
OR FUNCTION REFERENCE IN SUBSEQUENT STATEMENTS WILL
HAVE IT'S TYPE DETERMINED AS FOLLOWS-
IF THE FIRST CHARACTER OF THE VARIABLE OR FUNCTION
IS IN THE RANGE (3L-N,@U-N THEN THE TYPE IS ASSUMED
TO BE INDICATED BY THE CHARACTER PRECEDING THE
PARENTHESIS IN WHICH THE RANGE WAS ENCLOSED.
IF THE FIRST CHARACTER OF THE VARIABLE OR FUNCTION
DOES NOT FALL IN ANY OF THE RANGES, THEN THE TYPE
IS ASSUMED TO BE CHARACTER.
AT THE TIME THE VTYPE STATEMENT IS ENCOUNTERD TH
FOLLOWING ITEMS ARE CHECKED-
1. THE RANGES MUST BE DISJOINT IE. THE RANGES MUST
NOT OVERLAP.
2. @L-N MUST BE LESS THAN OR EQUAL TO @U-N FOR
EACH RANGE
3. ONLY ONE VTYPE STATEMENT IS ALLOWED PER COMPILE
UNIT, AND IT MUST IMMEDIATELY PRECEDE
THE COURSE OR SECTION STATEMENT FOR THE COMPILE UNIT.

VDEF @VAR-1< @UFLIT>,@VAR-2< @UFLIT>...
@VAR-l,@VAR-2... ARE DEFINED AND RESERVED STORAGE
BY THEIR APPEARANCE IN THE VDEF STATEMENT. THE
TYPE (C,F OR E) OF EACH VARIABLE IS DETERMINED
BY THE FIRST CHARACTER OF IT'S NAME IN
CONJUNCTION WITH THE VTYPE STATEMENT CURRENTLY IN
FORCE.
A NAME MAY APPEAR IN ONLY ONE VDEF OR CDEF
STATEMENT WITHIN THE COMPILE UNIT.

29

CDEF @VAR-1 (@LIT), @VAR-2 (@LIT)...
@VAR-1, @VAR-2,...ARE DEFINED, RESERVED STORAGE AND
SET TO THE VALUE INDICATED BY THE ASSOCIATED
@LIT. QUANTITIES DEFINED IN THIS WAY MUST NOT HAVE
THEIR VALUE CHANGED DURING EXECUTION. MORE EFFICIENT
EXECUTION WILL RESULT IF THE NUMBER OF CDEF
STATEMENTS IS KEPT TO A MINIMUM.
ALL OTHER RULES WHICH APPLY TO VARIABLES DEFINED
BY THE VDEF STATEMENT APPLY TO THE CDEF
STATEMENT, WITH THE EXCEPTION THAT THE LENGTH
OF CHARACTER VARIABLES IS DETERMINED BY THE
LENGTH OF THE ASSOCIATED @LIT.

CHARACTER VARIABLES ARE LIMITED TO 158
CHARACTERS, INCLUDING ALL *@' CHARACTERS. FIXED
AND FLOATING POINT VARIABLES MUST BE SPECIFIED
IN 32 OR FEWER CHARACTERS.

@LABEL CHKPT
INFORMATION IS SAVED WHICH ALLOWS THE USER TO RESTART
AT THE STATEMENT FOLLOWING THE CHKPT STATEMENT IF HE
IS 'LOGGED OFF' AS A RESULT OF A MACHINE MALFUNCTION,
LOGOF STATEMENT OR 'LOGOFF WITH CONTINUATION' COMMAND.

@OLABEL FIND <@FVAR-1, @FVAR-2>
THE TERMINAL IS INTERROGATED TO DETERMINE THE CURRENT
CURSOR POSITION. IF SPECIFIED THEN @FVAR-1 WILL CONTAIN
THE X (HORIZONTAL) COORDINATE AND @FVAR-2 WILL CONTAIN
THE Y (VERTICAL) COORDINATE.
IN ADDITION THE EXECUTION VARIABLES $FLIN AND $FPOS
ARE SET TO INDICATE THE CHARACTER WHOSE CENTER IS
NEAREST TO THE CURRENT CURSOR POSITION WITH THE CHARAC-
TER SIZE DETERMINED BY THE CURRENT VALUE OF $FCSIZ.

@LABLE LOGOF
THE USER IS IMMEDIATELY 'LOGGED OFF' FROM CAMELOT.
THIS IS ACCOMPLISHED IN A MANNER WHICH ALLOWS THE USER
TO RESTART AT THE STATEMENT FOLLOWING THE LAST CHKPT
STATEMENT EXECUTED WHEN SHE NEXT CONNECTS TO CAMELOT.

30

EXTERNAL DOCUMENTATION

2.3. SYNTACTIC VARIABLES

@CON-CLS
@ROP
@LOP
@AEXP
@FEXP
@EEXP
@AOP
@CEXP
@COP
@FREF
@VAR
@CVAR

@LIT
@CLIT
@ELIT
@UFLIT
0F.LIT
IS

:= @REXP / <(> @REXP:@LOP:@REXP <)>
EQ / NE / GT / LT / GE / LE / NL / NG
OR / AND
@FEXP / @EEXP

(@FVAR / @FREF / @FLIT / <(>
(@EVAR / @FREF / @ELIT / <(>
+/-/*/'//' (// IS THE REMAINDER OPERATOR)

@FEXP@AOP@FEXP <)>)
@EEXP@AOP(aEEXP <)>)

= (@VAR / @CLIT / @FREF / @CEXP@COP@CEXP)

) @FNAME (@EXP,@EXP,...
@CVAR / @FVAR / //EVAR

, @FVAR , @EVAR := 1 TO 6 ALPHANUMERIC CHARACTERS ,
THE FIRST OF WHICH MUST BE ALPHABETIC.
- @FLIT / @ELIT / @CLIT
:= f''@STRING,f'
:= @S@UFLIT
:= @D@UFLIT

:« @FLIT@P<(?UFLIT><E(aFLIT>
M / + / -

5 / 6 / @D := 0 / 1 / 2 / 3 / A /
@P := .
^STRING :« @C / @STRING@C
@C := A / B / C /.../ Z /

@AOP / @COP / V /
(3D /
i i t

/
/ &
/ '

7/8/9

/ ? / $ /

@LABEL := @A / @A@LABEL / @A@D
REQUIRED LABLE , WHICH MUST BE 6 OR FEWER
CHARACTERS LONG.

(^TEXT-STRING := ^STRING
CERTAIN CHARACTERS WILL CAUSE THE EFFECTS NOTED
NOTED BELOW IF PRESENT IN STRING -
(3 - AT SIGN

INDICATORS THAT THE SINGLE LETTER IMMEDIATELY
FOLLOWING IT IS TO BE DISPLAYED AS UPPER CASE.

@<§- TWO AT SIGNS
INDICATES THAT ALL LETTERS BETWEEN THE @'S
AND THE NEXT @ ARE TO BE DISPLAYED AS UPPER CASE.

- - UNDERSCORE
INDICATES THAT THE TEXT BETWEEN IT AND THE NEXT
UNDERSCORE IS TO BE UNDERLINED.

31

EXTERNAL DOCUMENTATION

ANY APOSTROPHES (') OR AMPERSANDS (&) WHICH ARE
TO BE DISPLAYED MUST BE PRESENT TWICE.

@VOCAL-FORM := @PHONEMS-FORM
@WORD-FORM
@TEXT-FORM
@PHON-VAR

'«'{aPLITsGFLm,...^'
@CLIT,...
(@CEXP<,@FEXP>,...
'>'(aCEXP,... '<'
COPY FROM VOTRAX LITERATURE

@PHON-LIT
^WORD-FORM
@TEXT-FORM
@PHON-VAR
@PLIT

$EFRMF(@FEXP)
THE INTEGER CONTAINED IN @FEXP IS CONVERTED TO AN E-TYPE
NUMBER. NOTE THAT THE CONVERSION IS EXACT IF AND ONLY IF
@FEXP IS LESS VHAN (APPROXIMATELY) 8 DECIMAL DIGITS.

$FFRME(@EEXP)
THE FLOATING POINT NUMBER CONTAINED IN @EEXP IS CONVERTED
TO AN INTEGER. THIS CONVERSION IS ACCOMPLISHED
BY IGNORING ANY FRACTIONAL PART. IF THE RESULTING INTEGER
IS TOO LARGE IN VALUE (> 2&&31-1 OR < -2**31) THEN THE
RESULT IS THE LARGEST INTEGER OF APPROPRIATE SIGN, AND
THE EXECUTION VARIABLE $FFEI IS SET TO 1. IF THE
CONVERSION IS ACCOMPLISHED WITHOUT ERROR $FFEI IS
SET TO ZERO.

$CFRMF(@FEXP)
THE F-TYPE NUMBER IDENTIFIED BY @FEXP IS CONVERTED TO
A CHARACTER STRING CONTAINING A DECIMAL REPRESENTATION OF
THE NUMBER. THE FORM OF THE RESULT IS THE NUMBER,
PRECEDED BY A •-' IF NEGATIVE, WITH LEADING ZEROS
SUPPRESSED. A ZERO VALUE IS REPRESENTED BY A SINGLE ZERO
WITH NO SIGN. A 'NEGATIVE ZERO1 IS NOT POSSIBLE.

$FFRMC(@CEXP)
THE STRING CONTAINED IN @CEXP IS CONVERTED TO AN F-TYPE
NUMBER. @CEXP MAY CONTAIN A STRING OF THE FORMAT
,B...SD...B...1 WHERE THE B'S INDICATE OPTIONAL SPACES,
THE S INDICATES AN OPTIONAL SIGN (+ OR -) AND THE D INDICATES
DECIMAL DIGITS. IF THE VALUE REPRESENTED BY THE STRING IS
OF TOO LARGE A MAGNITUDE TO BE REPRESENTED BY AN F-TYPE
NUMBER, THEN THE RESULT IS THE LARGEST NUMBER OF APPROPRIATE
SIGN AND $FFCI IS SET TO -1 OR -2 DEPENDING ON WHETHER
THE SIGN OF THE RESULT IS POSITIVE OR NEGATIVE, RESPECTIVELY.
IF THE STRING IS NOT OF THE CORRECT FORM, THEN A
RESULT OF ZERO IS RETURNED AND THE EXECUTION VARIABLE
$FFCI IS SET TO THE POSITION OF THE CHARACTER IN
@CEXP WHERE THE ERROR WAS DETECTED.
IF NO ERRORS OCCUR, $FFCI IS SET TO ZERO.

32

EXTERNAL DOCUMENTATION

$CFRME(@EEXP<,@FEXP>)
@EEXP IS CONVERTED TO A CHARACTER STRING ACCORDING TO
THE FOLLOWING RULES-
IF @FEXP IS NOT SPECIFIED THEN-

IF THE ABSOLUTE VALUE OF @EEXP IS LESS THAN OR
EQUAL TO 9999.9999 AND GREATER THAN OR EQUAL TO
.0001 THEN THE RESULTING CHARACTER STRING HAS THE
FORM •ZZZZ.99991 WHERE THE Z'S INDICATE ZERO SUPPRESSED

P POSITIONS (WHICH ARE NOT RETURNED IF THEY CONTAIN SPACES),

AND THE 9'S INDICATE POSITIONS WHICH WILL BE ZERO
FILLED UNTIL THE LAST NON-ZERO DIGIT IS ENCOUNTERED.
IF THE NUMBER IS NEGATIVE, THEN A '-' IS INSERTED PRIOR
TO THE FIRST CHARACTER OF THE RESULTING STRING.

IF THE ABOVE CONDITION IS NOT MET THEN THE RESULTING
STRING WILL HAVE THE FORM 'ZZZZZZZ.9999999ESXX' WHERE
THE Z'S AND 9'S ARE HANDLED AS ABOVE, AS IS THE SIGN,
THE 'E1 IS AN ACTUAL CHARACTER IN THE RESULTING STRING
AND THE 'S' IS THE SIGN (+ OR -) OF THE
EXPONENT (WHICH IS REPRESENTED BY THE 'XX1). THE
MEANING OF THIS FORM IS THAT THE NUMBER PRECEEDING THE fE'

SHOULD BE MULTIPLIED BY TEN RAISED TO THE XX1TH POWER TO
PRIVIDE THE CORRECT VALUE. THUS THE FORM IS VERY SIMILAR
TO STANDARD SCIENTIFIC NOTATION.

IF @FEXP IS SPECIFIED THEN CONVERSION IS AS ABOVE EXCEPT
THAT THE NUMBER OF DIGITS PRINTED AFTER THE DECIMAL POINT
IS EQUAL TO @FEXP. HOWEVER, IN NO CASE WILL MORE THAN 7
SIGNIFICANT DIGITS BE GENERATED, SINCE THIS IS THE
PRECISION LIMIT OF THE COMPUTER.

IF THE RESULTING STRING IS LONGER THAN THE OUTPUT
CHARACTER STRING INTO WHICH IT IS BEING STORED,
THEN $FCFI IS SET TO -1.

$EFRMC(@CEXP)
THE CHARACTER STRING IN @CEXP IS CONVERTED TO AN E-TYPE
NUMBER ACCORDING TO THE FOLLOWING RULES-
THE STRING MUST BE OF THE FORM 'B...SD...PD...B...ESX...B...'
WHERE THE B'S INDICATE OPTIONAL BLANKS,
THE FIRST 'S1 INDICATES AN OPTIONAL SIGN (+ OR -),
THE D'S INDICATE DECIMAL DIGITS TO BE INTERPRETED AS THE
SIGNIFICANT DIGITS OF THE NUMBER,
THE fP' INDICATES AN OPTIONAL DECIMAL POINT,
THE SECOND fSf INDICATES THE SIGN OF THE EXPONENT^

33

EXTERNAL DOCUMENTATION

//L2DH IS OPTIONAL, S
THE fEf INDICATES THE LETTER E, WHICH IS ALSO OPTIONAL.

THE FOLLOWING ADDITIONAL RULES APPLY -
1. IF @CEXP IS A NULL STRING, THEN $FECI IS SET TO -1.
2. IF THE STRING REPRESENTS A NUMBER TOO LARGE IN MAGNITUDE

TO BE STORED IN AN E-TYPE NUMBER, THEN $FECI IS SET
TO -2 AND THE RESULT IS SET EQUAL
TO THE LARGEST NUMBER OF APPROPRIATE SIGN.

3. IF THE STRING REPRESENTS A NUMBER TOO SMALL TO BE STORE
IN AN E-TYPE NUMBER, THEN $FECI IS SET TO -3 AND THE
RESULT IS THE SMALLEST NON-ZERO NUMBER OF APPROPRIATE
SIGN.

4. IF ANY OTHER FORMAT ERROR IS ENCOUNTERED, THEN $FECI
IS SET TO THE POSITION IN @CEXP WHERE THE ERROR WAS
DISCOVERED AND THE RESULT IS ZERO.

5. IF NO ERRORS OCCUR, THEN $FEFCI IS SET TO ZERO.

$INSTR(@FEXP,@CEXP-l,(aCEXP-2,. . .)
$CEXP-1 IS SEARCHED FOR fOCCURRANCES' OF @CEXP-2,
(3CEXP-3,... AND A VALUE OF TRUE IS RETURNED IF @CEXP-2,
@DEXP-3,... ALL 'OCCUR* IN @CEXP-1. OTHERWISE, A VALUE OF
FALSE IS RETURNED. @CEXP-N IS SAID TO 'OCCUR' IN @CEXP-1
IF AT LEAST ($FLEN(@CEXP-N)*@FEXP)/100 CHARACTERS OF
@CEXP-N OCCUR CONTINUOUSLY ANYWHERE IN @CEXP-1.

$INSTRO(@FEXPI,(aCEXP-l,@CEXP-2,. . .)
THIS FUNCTION BEHAVES LIKE $INSTR WITH THE EXCEPTION
THAT ANY 'OCCURRANCE' OF @CEXP-N MUST FOLLOW THE
'OCCURANCE' OF @CEXP-(N-1) IN @CEXP-1.

$CSBSTR(@CEXP,@FEXP-1,@FEXP-2)
A STRING OF CHARACTERS FROM @CEXP, BEGINNING
WITH THE '@FEXP-1'TH AND CONTINUING FOR @FEXP-2
CHARACTERS IS RETURNED. IF @FEXP-l+@FEXP-2
EXCEEDS $FLEN(@CEXP) THE ONLY
THOSE CHARACTERS ACTUALLY IN @CEXP ARE RETURNED.
IF $FEXP IS ZERO OR NEGATIVE, OR @FEXP-2
IS NEGATIVE THEN THE EXECUTION VARIABLE $FSBSI IS SET TO -1.
AND A NULL STRING IS RETURNED. IF @FEXP-2 IS ZERO THEN A
NULL STRING IS RETURNED AND $FSBSI IS SET TO ZERO.

$CNXTWD((aCEXP-l,@FEXP<,@FVAR<,(aCEXP-2>>)
THE NEXT 'WORD' IN @CEXP-1 IS RETURNED. @CEXP-1 IS SCANNED
BEGINNING WITH THE CHARACTER AT POSITION @FEXP UNTIL
THE FIRST CHARACTER WHICH IS *NOT* A DELIMITER IS FOUND.

34

EXTERNAL DOCUMENTATION

SUBSEQUENT CHARACTERS FORM THE RESULT UNTIL THE NEXT
DELIMITER IS FOUND, AT WHICH TIME @FVAR IS
SET (IF SPECIFIED) TO THE POSITION IN @CEXP-1 OF THE
CHARACTER WHICH CAUSED THE SCAN TO END. IF THE END OF
@CEXP-1 IS ENCOUNTERED DURING THE SCAN, THEN THE
CHARACTERS PRIOR TO THE END OF THE STRING ARE RETURNED
AND @FVAR IS SET TO ZERO IF IT WAS SPECIFIED.

IF @CEXP-2 IS SPECIFIED THEN EACH CHARACTER IN @CEXP-2
IS USED AS A DELIMITER; OTHERWISE, THE FOLLOWING CHARACTERS
CONSTITUTE THE 'DEFAULT1 DELIMITERS.

BLANKS . :
? - ! (EXCLAMATION MARK)
+
; * /

$CBEL (@FEXP)
RETURNS @FEXP 'BELL' CHARACTERS.

$CBSP (@FEXP)
RETURNS @FEXP 'BACKSPACE1 CHARACTERS.

$CLF (@FEXP)
RETURNS FEXP 'LINE FEED' CHARACTERS.

SCSP (@FEXP)
RETURNS @FEXP SPACES.

$CCR (@FEXP)
RETURNS @FEXP 'CARRIAGE RETURN' CHARACTERS.

$CRPT (@CEXP,@FEXP)
THE CHARACTER STRING INDICATED BY @CEXP IS DUPLICATED @FEXP
TIMES AND THE RESULTING VALUE RETURNED.
EXAMPLE, $CRPT ('ABC',3) RESULTS IN 'ABCABCABC'.

$CRLF (@FEXP)
RETURNS @FEXP 'REVERSE LINE FEED' CHARACTERS. IF OUTPUT VIA
A 'TEXT' COMMAND, EACH RLF CHARACTER CAUSES THE CURSOR TO
MOVE *UP* ONE LINE.

IN FOLLOWING THREE ROUTINES THE ARGUMENT IDENTIFIED
AS @FVAR MAY NAME A NEGATIVE VALUE AS FOLLOWS
-1 - INDICATES A *PERMANENT* DISK ERROR WHICH IS

NORMALLY A HARDWARE ERROR. NO ADDITIONAL
RECOVERY SHOULD BE ATTEMPTED.

35

EXTERNAL DOCUMENTATION

-2 - INDICATES A WORD, OR PHONEME FIELD PASSED AS INPUT
EXCEEDED 32 CHARACTERS.

ADDITIONALLY THE VARIABLE @CVAR-W IS USED AS A TEMPORARY
WORK AREA AND MUST BE AT LEAST BYTES LONG.

$FRDWD (@CEXP, @CVAR, @CVAR-W)
THE 'WORD1 INDICATED BY @CEXP IS 'LOOKED UP'
IN THE VDF AND THE RESULTING PHONEMES ARE RETURNED IN
'INTERNAL' FORM IN @CVAR-1. THE RETURNED VALUE IS SET TO
ZERO IF THE 'LOOK UP' IS SUCCESSFUL AND TO 1 IF THE
VALUE OF @CEXP IS NOT FOUND.

$FDLWD (@CEXP, @CVAR-W)
THE 'WORD' INDICATED BY @CEXP IS REMOVED FROM THE VDF
IF PRESENT, AND A VALUE OF ZERO RETURNED.
A VALUE OF 1 IS RETURNED IF THE WORD WAS NOT PRESENT
IN THE VDE.

$FADWD «aCEXP-1, @CEXP-2, @CVAR-W)
THE 'WORD' INDICATED BY @CEXP-1 IS ADDED TO THE VDF
WITH THE PHONEME INDICATED BY @CEXP-2 AND A
VALUE OF ZERO IS RETURNED.
THE FOLLOWING EXCEPTIONS MAY OCCUR AND RESULT IN THE
RETURNED VALUE SHOWN.
1 - 'WORD' (@CEXP-1) ADDED IN OVERFLOW AREA - NOT IN
ERROR.
2 - 'WORD' (@CEXP-1) ALREADY PRESENT IN VDF.
2 - 'WORD' WAS *NOT* ADDED BECAUSE OF INSUFFICIENT SPACE
ON THE DISK FILE.

$FDCOD (@CEXP, @CVAR)
THE RESULT OF EVALUATING @CEXP IS INTERPRETED AS PHONEMES IN
'INTERNAL' FORM, WHICH ARE CONVERTED TO THE 'EXTERNAL' FORM
DESCRIBED IN 'PHONETIC INPUT DATA FORMAT' AND
PLACED IN @CVAR.
A VALUE OF ZERO IS RETURNED OF NO ERRORS ARE ENCOUNTERED.
A VALUE OF -1 IS RETURNED IF THE INPUT STRING (@CEXP)
WAS NULL AND @CVAR IS SET TO NULL
A VALUE OF -2 IS RETURNED OF @CEXP CONTAINED A CHARACTER
COMPRISED OF 'XX111111' WHERE THE X'S MAY BE 0 OR 1.
THE OUTPUT STRING (@CVAR) WILL CONTAIN '???' IN THE
CORRESPONDING POSITION.
A VALUE OF 1 TO 253 IS RETURNED IF THERE WAS
INSUFFICIENT ROOM IN @CVAR TO CONTAIN THE CONVERTED
STRING. THE ACTUAL VALUE RETURNED IS ONE *GREATER THAN*
THE LAST PHONEME SUCCESSFULLY CONVERTED.

36

EXTERNAL DOCUMENTATION

$FRAND (@FVAR)
A RANDOM NON-ZERO POSITIVE INTEGER IS RETURNED AND THE
VALUE OF @FVAR IS CHANGED. DIFFERENT CALLS TO $FRAN WITH
IDENTICAL VALUES OF @FVAR WILL PRODUCE THE SAME VALUE AS
AS RESULT.

$CTOD (1)
THE CURRENT TIME OF DAY IS RETURNED AS 8 CHARACTERS IN THE
FORM 'HH.MM.SS1. THE TIME IS MAINTAINED AS A 24 HOUR CLOCK
WHERE 00.00.00 IS MIDNIGHT.

$FTOD (1)
THE CURRENT TIME OF DAY IS RETURNED AS AN INTEGER INDICATING
THE NUMBER OF SECONDS SINCE MIDNIGHT.

$CTUC (@CEXP)
THE RESULT OF EVALUATING @CEXP IS EXAMINED FOR LOWER CASE
ALPHABETIC CHARACTERS, WHICH ARE TRANSFORMED INTO THE
CORRESPONDING UPPER CASE CHARACTER AND THE RESULTING STRING
IS RETURNED.

$CTLC «aCEXP)
ANY UPPER CASE CHARACTERS IN @CEXP ARE TRANSFORMED TO THE
CORRESPONDING LOWER CASE CHARACTERS AND THE RESULTING STRING
IS RETURNED.

$FMLEN (@CVAR)
RETURNS THE MAXIMUM LENGTH OF @CVAR - I.E., THE LENGTH
WHICH APPEARS IN THE VDEF OR CDEF STATEMENT FOR THE
VARIABLE.

$FLEN (@CEXP)
RETURNS THE CURRENT LENGTH OF THE RESULT OF EVALUATING @CEXP.

$FNSEG (@CEXP)
RETURNS THE NUMBER OF SEGMENTS IN THE VOCAL TEXT
IDENTIFIED BY THE FIRST 6 CHARACTERS RESULTING FROM THE
EVALUATION OF @CEXP.

$FLOC (@CEXP-1, @CEXP-2)
THE STRING RESULTING FROM EVALUATING @CEXP-1 IS SEARCHED
FOR THE STRING RESULTING FROM @CEXP-2. IF A MATCH IS FOUND
THE POSITION IN @CEXP-1 OF THE FIRST CHARACTER OF THE
MATCHING STRING IS RETURNED, OTHERWISE ZERO IS RETURNED.
EXAMPLE:

$FLOC ('ABCD', 'BC')
WOULD RETURN 2

$FLOC CABCD', 'CDE')
WOULD RETURN ZERO

37

EXTERNAL DOCUMENTATION

4. EXECUTION VARIABLES

$FLINE- INTEGER
GIVES THE CURRENT LINE NUMBER OF THE ALPHA-CURSOR.

$FPOS- INTEGER
GIVES THE CURRENT POSITION, WITHIN THE LINE, OF THE
ALPH-CURSOR.

$CDATE- 8 CHARACTER VARIABLE
CONTAINS THE CURRENT DATE IN THE FORM MM/DD/YY.

$CDOW- 6 TO 9 CHARACTER VARIABLE CONTAINING THE CURRENT
DAY OF THE WEEK IE, -MONDAY, TUESDAY,...

$CMNTH- 3 TO 9 CHARACTER VARIABLE CONTAINING THE CURRENT
MONTH IE. JANUARY, MAY,...

$CFNAM- 0 TO 40 CHARACTER VARIABLE
CONTAINS THE FIRST NAME OF THE STUDENT CURRENTLY
RUNNING.

$CLNAM- 0 TO 40 CHARACTER VARIABLE
CONTAINS THE LAST NAME OF THE STUDENT CURRENTLY
RUNNING.

$FLAT- POSITIVE OR ZERO INTEGER
'LATENCY' IN SECONDS OF THE MOST RECENT INPUT
I.E. - THE ELAPSED TIME FROM WHEN THE LAST
'READ' OR 'READCC' WAS ISSUED TO WHEN THE LAST
CHARACTER OF INPUT WAS RECEIVED.

$CSECT- 0 TO 6 CHARACTERS
CONTAINS THE NAME OF THE SECTON CURRENTLY
EXECUTING. NULL IF REFERENCED AT THE COURSE LEVEL.

$FID- 9 CHARACTER VARIABLE
CONTAINS THE ID NUMBER OF THE STUDENT CURRENTLY
RUNNING.

$CRSE - 1 TO 6 CHARACTER VARIABLE
CONTAINS THE NAME OF THE COURSE CURRENTLY RUNNING.

$CLBL - 1 TO 6 CHARACTERS
CONTAINS THE LABEL OF THE LAST LABELED STATEMENT
EXECUTED.

38

EXTERNAL DOCUMENTATION

$FMLIN- INTEGER
GIVES THE MAXIMUM LINE NUMBER ALLOWABLE ON THE
TERMINAL IN USE.

$FMPOS- INTEGER
GIVES THE MAXIMUM POSITION WITHIN A LINE ALLOWABLE
ON THE TERMINAL IN USE.

39

EXTERNAL DOCUMENTATION

5. GRAPHICS: TERMINAL CONTROL SYSTEM

5.1 VIRTUAL GRAPHICS

5.1.1. THE VIRTUAL DISPLAY

THE VIRTUAL DISPLAY IS AN IMAGINARY TWO-DIMENSIONAL SURFACE
WITH A RANGE IN BOTH THE X AND Y DIRECTIONS EQUAL TO THE
RANGE OF A SINGLE PRECISION FLOATING POINT NUMBER. USING
THE VIRTUAL DISPLAY THE USER MAY CONSTRUCT DRAWINGS, PICTURES,
AND GRAPHS OF EXTREME COMPLEXITY AND DETAIL.

SINCE THE UNIT OF MEASUREMENT OF THE VIRTUAL DISPLAY IS ARBI-
TRARY, IT MAY BE ASSUMED TO BE REPRESENTATIVE OF ANY MEASUREMENT
UNIT FROM MICRONS TO LIGHT-YEARS, WITH ALL MEASUREMENTS
TRANSLATED TO THE ASSUMED UNIT FOR THE GIVEN DRAWING. FOR
EXAMPLE, THE USER DECIDES THAT THE BASIC UNIT OF THE VIRTUAL
DISPLAY WILL REPRESENT INCHES. THEN THE VIRTUAL COORDINATE
(2.,0.5) REPRESENTS A POINT TWO INCHES TO THE RIGHT OF THE
ORIGIN ON THE X-AXIS AND ONE HALF INCH UP ON THE Y-AXIS. TO
INDICATE THE POINT ONE MILE (63,360 INCHES) TO THE LEFT OF
THE ORIGIN ALONG THE X-AXIS, THE VIRTUAL COORDINATE (-63360.0,
0.0) WOULD BE USED.

THE VIRTUAL DISPLAY IS SIMILAR TO NORMAL DISPLAYS AND PLOTTING
DEVICES IN THAT THERE IS A MOVABLE POINT WHICH MAY BE THOUGHT
OF AS THE WRITING CURSOR ON THE VIRTUAL DISPLAY. THIS POINT
IS CALLED THE IMAGINARY BEAM, AND ITS POSITION IS THE VIRTUAL
COORDINATE WHICH REPRESENTS THE LOCATION OF THE WRITING CURSOR
AS IF THE VIRTUAL DISPLAY WERE AN ACTUAL DEVICE.

SINCE ONLY THE PORTIONS OF VECTORS AND THE POINTS WHICH LIE
WITHIN THE CURRENT WINDOW ARE DISPLAYED, THE IMAGINARY BEAM
POSITION DOES NOT ALWAYS REPRESENT THE ACTUAL STORAGE BEAM
POSITION. THE ACTUAL BEAM IS REPRESENTED ON THE VIRTUAL
DISPLAY BY THE REAL BEAM, WHICH IS UPDATED TO REFLECT THE
ACTUAL OUTPUT TO THE TERMINAL. WHEN ENTERING VIRTUAL GRAPHICS
OR WHENEVER THE WINDOW IS REDEFINED, BOTH THE IMAGINARY BEAM
AND THE REAL BEAM ARE SET AT THE VIRTUAL COORDINATE REPRESEN-
TATION (ACCORDING TO THE LATEST WINDOW DEFINITION) OF THE
ACTUAL BEAM POSITION.

5.1.2 WINDOWING

ALL OR ANY PORTION OF THE VIRTUAL DISPLAY MAY BE VIEWED AT ANY
TIME THROUGH THE TECHNIQUE OF WINDOWING. THE PROTION OF THE

40

EXTERNAL DOCUMENTATION

VIRTUAL DISPLAY TO BE SHOWN IS DEFINED BY RECTANGULAR BOUNDARIES.
THIS RECTANGLE IS CALLED THE VIRTUAL WINDOW, AND ONLY THOSE
VECTORS WHICH PASS THROUGH THE VIRTUAL WINDOW WILL BE DISPLAYED.

IT IS NOT NECESSARY TO USE ALL OF THE SCREEN FOR DISPLAY OF THE
VIRTUAL WINDOW. THE USER MAY DEFINE A RECTANGULAR SECTION OF
ANY SIZE AND LOCATION ON THE SCREEN AS THE AREA IN WHICH THE
WINDOW WILL APPEAR. THIS RECTANGLE IS CALLED THE SCREEN WINDOW
AND TOGETHER WITH THE VIRTUAL WINDOW DEFINES THE TRANSFORMATION
BETWEEN THE VIRTUAL DISPLAY AND THE SCREEN.

ELIMINATION OF VECTORS AND PORTIONS OF VECTORS WHICH LIE
OUTSIDE OF THE WINDOW WILL BE DONE AUTOMATICALLY BY THE VIRTUAL
GRAPHIC ROUTINES AS WELL AS THE SCALING AND CONVERSION OF
THESE VECTORS THAT ARE CONTAINED IN OR PASS THROUGH THE WINDOW.

IT SHOULD BE NOTED HERE THAT THE SCALING IS NOT RELATED TO THE
SIZE OF THE VIRTUAL DISPLAY OR THE SCREEN, BUT IS DETERMINED
SOLELY BY THE WINDOW DEFINITION. ALSO, SINCE THE X AND Y EXTENTS
OF THE WINDOW MAY BE SEPARATELY DEFINED, THE X AND Y SCALING
ARE INDEPENDENT. THIS ALLOWS FOR THE EMPHASIS OF EITHER X OR
Y DATA VALUES. CARE MUST BE TAKEN THAT UNWANTED DISTORTION IS
NOT INTRODUCED BY ERRONEOUS WINDOW DEFINITIONS. THE INITIAL
WINDOW DEFINITION IS SET SO THAT THE PORTION OF THE VIRTUAL
DISPLAY WITH COORDINATES EQUIVALENT TO THE SCREEN WILL BE
DISPLAYED:

VIRTUAL WINDOW INITIAL VALUES:

X MINIMUM - 0., X EXTENT - 1023
Y MINIMUM - 0., Y EXTENT - 780

SCREEN WINDOW INITIAL VALUES:

X MINIMUM - 0, X EXTENT - 1023
Y MINIMUM - 0, Y EXTENT - 780

THE USER UTILIZES THE VIRTUAL DISPLAY BY FIRST DEFINING HIS
WINDOW AND THEN CONSTRUCTING HIS DRAWING, PICTURE, OR GRAPH
WITH THE USE OF THE VIRTUAL GRAPHIC ROUTINES. THE USER MAY
DISPLAY SEVERAL PORTIONS OF THE VIRTUAL DISPLAY AT ONE TIME
BY REDEFINING THE WINDOW AND REPROCESSING THE VIRTUAL DISPLAY
FOR EACH OR MAY SUPERIMPOSE DATA FROM "SEVERAL" VIRTUAL
DISPLAYS BY USING A COMMON SCREEN WINDOW. ALL TRANSFORMATIONS
BETWEEN THE VIRTUAL DISPLAY AND THE SCREEN WILL BE BASED UPON
THE LATEST WINDOW DEFINITIONS.

41

EXTERNAL DOCUMENTATION

SETTING THE VIRTUAL WINDOW

THE PORTION OF THE VIRTUAL DISPLAY TO BE VIEWED IS
DETERMINED BY THE VIRTUAL WINDOW. THE VIRTUAL WINDOW
IS DEFINED BY A POINT WHICH REPRESENTS ITS LOWER LEFT
CORNER AND THE EXTENT OF THE WINDOW IN THE X AND Y
DIRECTIONS.

CALLING SEQUENCE:

FCALL VWINDO,(@EEXP-X,@EEXP-XL,@EEXP-Y,@EEXP-&L)
WHERE: @EEXP-X - MINIMUM X-COORDINATE OF THE VIRTUAL WINDOW.

@EEXP-XL - EXTENT OF THE VIRTUAL WINDOW IN THE
X-DIRECTION.

@EEXP-Y - MINIMUM Y-COORDINATE OF THE VIRTUAL WINDOW.

@EEXP-YL - EXTEND OF THE VIRTUAL WINDOW IN THE
Y-DIRECTION.

SETTING THE SCREEN WINDOW

THE SCREEN WINDOW DEFINES THE SECTION OF THE SCREEN INTO
WHICH THE VIRTUAL WINDOW WILL BE TRANSFORMED. ITS
DEFINITION IS SIMILAR TO THAT OF THE VIRTUAL WINDOW.

CALLING SEQUENCE:

FCALL SWINDO, (@FEXP-IX,<aFEXP-LX,@FEXP-IY,(aFEXP-LY)

WHERE: @FEXP-IX - MINIMUM SCREEN X-COORDINATE OF THE SCREEN
WINDOW.

@FEXP-LX - EXTENT OF THE SCREEN WINDOW IN THE
X-DIRECTION.

@FEXP-IY - MINIMUM SCREEN Y-COORDINATE OF THE SCREEN
WINDOW.

@FEXP-LY - EXTENT OF THE SCREEN WINDOW IN THE
Y-DIRECTION.

5.1.3. ABSOLUTE VECTORS

VIRTUAL GRAPHICS ALLOW THE USER TO DRAW, MOVE, OR POINT PLOT
TO ANY PARTICULAR POINT ON THE VIRTUAL DISPLAY WITH AN ABSOLUTE
VECTOR. AN ABSOLUTE VECTOR EXTENDS FROM THE CURRENT IMAGINARY
BEAM POSITION TO THE LOCATION SPECIFIED BY THE GIVEN VIRTUAL
COORDINATES, (X,Y). MODE ENTRY AND TRANSFORMATION TO SCREEN
VECTORS, INCLUDING WINDOWING AND CLIPPING, IS AUTOMATIC.

42

EXTERNAL DOCUMENTATION

DRAW

A VECTOR MAY BE DRAWN FROM THE LAST POINT ON THE VIRTUAL
DISPLAY AT WHICH THE IMAGINARY BEAM WAS POSITIONED TO A
SPECIFIED POINT WITH DRAWA. ONLY THAT PORTION, IF ANY,
OF THE VECTOR WHICH PASSES THROUGH THE VIRTUAL WINDOW
WILL BE VISIBLE. ON RETURN FROM THIS ROUTINE, THE
IMAGINARY BEAM WILL BE POSITIONED AT THE GIVEN VIRTUAL
COORDINATES.

CALLING SEQUENCE:

FCALL DRAWA,(@EEXP-X,@EEXP-Y)

WHERE: @EEXP-X - VIRTUAL X-COORDINATE OF THE POINT.
@EEXP-Y - VIRTUAL Y-COORDINATE OF THE POINT.

MOVE

A MOVE (AN INVISIBLE VECTOR) TO ANY PARTICULAR POINT ON
THE VIRTUAL DISPLAY MAY BE MADE BY CALLING MOVEA. ON
RETURN FROM THIS ROUTINE, THE IMAGINARY BEAM WILL BE
POSITIONED AT THE GIVEN VIRTUAL COORDINATES.

CALLING SEQUENCE:

FCALL MOVEA, ((3EEXP-X,(aEEXP-Y)

WHERE: @EEXP-X - VIRTUAL X-COORDINATE OF THE POINT.
@EEXP-Y - VIRTUAL Y-COORDINATE OF THE POINT.

POINT PLOT

A POINT MAY BE PLOTTED AT ANY LOCATION ON THE VIRTUAL
DISPLAY WITH POINTA. ONLY IF THE GIVEN VIRTUAL COOR-
DINATES ARE WITHIN THE VIRTUAL WINDOW WILL A POINT
ACTUALLY BE DISPLAYED. ON RETURN FROM THIS ROUTINE,
THE IMAGINARY BEAM WILL BE POSITIONED AT THE GIVEN
VIRTUAL COORDINATES.

CALLING SEQUENCE:

FCALL POINTA,(@EEXP-X,@EEXP-Y)

WHERE: @EEXP-X - VIRTUAL X-COORDINATE OF THE POINT.
@EEXP-Y - VIRTUAL Y-COORDINATE OF THE POINT.

A3

EXTERNAL DOCUMENTATION

DASH

A DASHED LINE MAY BE DRAWN FROM THE LAST POINT AT WHICH
THE IMAGINARY BEAM WAS POSITIONED TO A SPECIFIED POINT
WITH DASHA. ONLY THAT PORTION, IF ANY, WHICH PASSES
THROUGH THE VIRTUAL WINDOW WILL BE VISIBLE. ON RETURN
FROM THIS ROUTINE, THE IMAGINARY BEAM WILL BE POSITIONED
AT THE GIVEN VIRTUAL COORDINATE.

CALLING SEQUENCE:

FCALL DASHA, (@EEXP-X,(aEEXP-Y,(aEEXP-L)

WHERE: @EEXP-Y - VIRTUAL X-COORDINATE OF THE POINT.
@EEXP-Y - VIRTUAL Y-COORDINATE OF THE POINT.
@FEXP-L - DASHED LINE SPECIFICATION.

A DASHED LINE IS SPECIFIED BY CON-
CATENATING INTEGERS DESCRIBING THE
LINE SEGMENT LENGTH AND VISIBILITY.
ALL CODES EXCEPT 9 SHOULD HAVE 2 OR
MORE INTEGERS.
1 5 RASTER UNITS, VISIBLE.
2 5 RASTER UNITS, INVISIBLE.
3 10 RASTER UNITS, VISIBLE.
A 10 RASTER UNITS, INVISIBLE.
5 25 RASTER UNITS, VISIBLE.
6 25 RASTER UNITS, INVISIBLE.
7 50 RASTER UNITS, VISIBLE.
8 50 RASTER UNITS, INVISIBLE.
9 ALTERNATE BRIGHT AND DARK

BETWEEN POINTS.

NOTE: SCREEN DEFINITION DOES NOT AFFECT
DASH SIZE.

5.1.4. RELATIVE VECTORS

VIRTUAL GRAPHICS ALSO ALLOW THE USER TO DEFINE A DISPLACEMENT
OF GIVEN LENGTH AND DIRECTION ON THE VIRTUAL DISPLAY THROUGH
THE USE OF RELATIVE VECTORS. RELATIVE VECTORS OFFER THE
ABILITY TO CREATE SIMILAR STRUCTURES AT DIFFERENT POSITIONS
ON THE VIRTUAL DISPLAY WITH ONE SET OF DISPLAY COMMANDS.
CONVERSION OF THE RELATIVE VECTOR TO AN ABSOLUTE VECTOR, MODE
ENTRY, AND TRANSFORMATION TO SCREEN VECTORS, INCLUDING
WINDOWING AND CLIPPING, IS AUTOMATIC. ON RETURN FROM A
RELATIVE VECTOR ROUTINE, THE IMAGINARY BEAM WILL BE LOCATED
AT THE POINT DEFINED BY ITS INITIAL POSITION PLUS THE
DISPLACEMENT VALUE.

44

EXTERNAL DOCUMENTATION

DRAW

A RELATIVE VECTOR MAY BE DRAWN ON THE VIRTUAL DISPLAY
FROM THE CURRENT IMAGINARY BEAM LOCATION WITH DRAWR.
THE X AND Y DISPLACEMENT VALUES WHICH DEFINE THE LENGTH
AND DIRECTION OF THE RELATIVE VECTOR ARE INPUT ARGUMENTS
TO DRAWR. ONLY THAT PORTION, IF ANY, OF THE RESULTANT
VECTOR WHICH PASSES THROUGH THE VIRTUAL WINDOW WILL BE
DISPLAYED.

CALLING SEQUENCE:

FCALL DRAWR, (<aEEXP-X,(3EEXP-Y)

WHERE: @EEXP-X - X-VALUE OF THE DISPLACEMENT.
@EEXP-Y - Y-VALUE OF THE DISPLACEMENT.

MOVE

A RELATIVE MOVE ON THE VIRTUAL DISPLAY MAY BE GENERATED
BY CALLING MOVER WITH THE X AND Y DISPLACEMENTS AS
ARGUMENTS.

CALLING SEQUENCE:

FCALL MOVER,(@EEXP-X,@EEXP-Y)

WHERE: @EEXP-X - X-VALUE OF THE DISPLACEMENT.
@EEXP-Y - Y-VALUE OF THE DISPLACEMENT.

POINT PLOT

POINTS MAY ALSO BE PLOTTED RELATIVE TO THE CURRENT
IMAGINARY BEAM LOCATION ON THE VIRTUAL DISPLAY. IF
THE RESULTANT POINT IS NOT WITHIN THE VIRTUAL WINDOW
IT WILL NOT BE DISPLAYED.

CALLING SEQUENCE:

FCALL POINTR, (@EEXP-X,(3EEXP~Y)

WHERE: @EEXP-X - X-VALUE OF THE DISPLACEMENT.
@EEXP-Y - Y-VALUE OF THE DISPLACEMENT.

45

EXTERNAL DOCUMENTATION

DASH

A DASHED LINE MAY BE DRAWN ON THE VIRTUAL DISPLAY
FROM THE CURRENT IMAGINARY BEAM LOCATION TO A POINT
DISPLACED BY X AND Y WITH DASHR. ONLY THAT PORTION,
IF ANY, OF THE LINE WHICH PASSES THROUGH THE VIRTUAL
WINDOW WILL BE DISPLAYED.

CALLING SEQUENCE:

FCALL DASHR,(@EEXP-X,@EEXP-Y,@FEXP-L)

WHERE @EEXP-X - X-VALUE OF THE DISPLACEMENT.
@EEXP-Y - Y-VALUE OF THE DISPLACEMENT.
@FEXP-L - DASHED LINE SPECIFICATION.

A DASHED LINE IS SPECIFIED BY CON-
CATENATING INTEGERS DESCRIBING THE
LINE SEGMENT LENGTH AND VISIBILITY.
ALL CODES EXCEPT 9 SHOULD HAVE 2 OR
MORE INTEGERS.
1 5 RASTER UNITS, VISIBLE.
2 5 RASTER UNITS, INVISIBLE.
3 10 RASTER UNITS, VISIBLE.
4 10 RASTER UNITS, INVISIBLE.
5 25 RASTER UNITS, VISIBLE.
6 25 RASTER UNITS, INVISIBLE.
7 50 RASTER UNITS, VISIBLE.
8 50 RASTER UNITS, INVISIBLE.
9 ALTERNATE BRIGHT AND DARK

BETWEEN POINTS.

NOTE: SCREEN DEFINITION DOES NOT AFFECT DASH
SIZE.

5.1.5. SCALING AND ROTATING

RELATIVE VECTORS ARE USED PRIMARILY TO CONSTRUCT OBJECTS OR
ENTITIES WHICH MUST BE DISPLAYED AT A NUMBER OF DIFFERENT
LOCATIONS ON THE VIRTUAL DISPLAY. HOWEVER, THE SIZE AND
ORIENTATION OF THESE OBJECTS IS NOT ALWAYS THE SAME. FOR
THIS REASON, RELATIVE VECTORS ARE AUTOMATICALLY SCALED AND
ROTATED BY THE RELATIVE VECTOR ROUTINES ACCORDING TO THE
SCALING FACTOR, TRSCAL, AND THE ROTATION FACTORS, TRCOSF AND
TRSINF. TRSCAL, TRCOSF, AND TRSINF ARE ALL TERMINAL STATUS
AREA VARIABLES. ALL INPUT ARGUMENTS TO THE RELATIVE VECTOR
ROUTINES ARE UNSCALED AND UNROTATED. THE INPUT ARGUMENTS
DEFINE THE NORMAL SIZE AND ORIENTATION FOR A RELATIVE VECTOR.
SCALING AND ROTATION WILL NOT EFFECT ABSOLUTE VECTORS.

46

EXTERNAL DOCUMENTATION

SETTING THE SCALE

CALLING THE ROUTINE 'SCALE' CAN BE USED
TO ALTER THE LENGTH OF A RELATIVE VECTOR. ALL RELATIVE
VECTORS ARE SCALED ACCORDING TO THE CURRENT VALUE.
FOR EXAMPLE, IF A SECTION OF RELATIVE VECTOR CODING
WILL CONSTRUCT A GIVEN OBJECT AND YOU REQUIRE THE
OBJECT TO BE CONSTRUCTED AGAIN AT TWICE THE NORMAL
SIZE, THEN CALL SCALE WITH AN ARGUMENT OF 2.0 AND
RE-EXECUTE THE CODE WHICH WILL CONSTRUCT THE OBJECT.
THE INITIAL SCALE FACTOR IS 1.0

SETTING THE ROTATION

RELATIVE VECTORS MAY ALSO HAVE THEIR DIRECTION ALTERED
THROUGH THE RELATIVE VECTOR ROTATION ROUTINE 'ROTAT' -

CALLING SEQUENCE:

FCALL ROTAT,(@EEXP)

WHERE:@EEXP - THE ROTATION ANGLE , IN DEGREES.

NOTE: @EEXP MAY BE NEGATIVE , BUT MUST BE IN THE RANGE
-XXXXXXXXXX TO +XXXXXXXXXX.

ALL RELATIVE VECTORS ARE ROTATED ACCORDING TO THE
VALUE OF THE CURRENT ROTATION FACTOR. IF THE USER
WISHES TO CONSTRUCT AN OBJECT DEFINED BY RELATIVE
VECTORS AT AN ANGLE DIFFERENT FROM THE NORMAL ORIENTA-
TION, HE CALLS 'ROTAT1 WITH THE DESIRED ANGLE OF
ROTATION AND EXECUTES THE CODE FOR
THE OBJECT.

5.2. DIRECT GRAPHICS

5.2.1 THE SCREEN

THE TERMINAL SCREEN IS A TWO-DIMENSIONAL SURFACE CONSISTING
OF A DISCRETE 1024 X 1024 MATRIX OF ADDRESSABLE POINTS, OF
WHICH 1024 X 781 OF THESE POINTS LIE IN THE VIEWABLE AREA
(VECTORS JUST ABOVE 780 ON THE Y-AXIS MAY BE VISIBLE BUT
MARGINAL IN QUALITY. FOR THE PURPOSES OF THIS MANUAL SUCH
VECTORS ARE CONSIDERED PART OF THE UNVIEWABLE AREA) OF THE
TERMINAL SCREEN. THE ORIGIN OF THE SCREEN LIES AT THE EXTREME
LOWER LEFT CORNER.

47

EXTERNAL DOCUMENTATION

OPERATIONS ON THE SCREEN ARE CALLED DIRECT GRAPHICS, AND
ALLOW THE USER TO RELATE DIRECTLY WITH THE VISIBLE SUR-
FACE OF THE TERMINAL. DIRECT GRAPHICS ALLOW THE USER TO
WORK AT A BASIC GRAPHIC LEVEL AND AVOID THE OVERHEAD OF
THE VIRTUAL CLIPPING AND TRANSFORMATION ROUTINES. THE USER
HAS THE RESPONSIBILITY OF REMAINING ON SCREEN AS ALL CO-
ORDINATE INPUT TO DIRECT GRAPHIC ROUTINES ARE INTERPRETED
AS MOD 1024.

DIRECT GRAPHICS ARE PRIMARILY USED WITH ALPHANUMERIC OUTPUT
AND FOR DISPLAY LAYOUT. THE USER MAY FREELY ALTERNATE BE-
TWEEN DIRECT AND VIRTUAL GRAPHICS. (NOTE: WHEN USING A
VIRTUAL GRAPHIC ROUTINE AFTER USE OF DIRECT GRAPHICS
OR ALPHANUMERIC OUTPUT, THE IMAGINARY BEAM IS CONSIDERED TO
BE POSITIONED AT THE VIRTUAL COORDINATE THAT IS EQUIVALENT
TO THE SCREEN COORDINATE OF THE BEAM POSITION UNDER THE
CURRENT WINDOW TRANSFORMATION.)

5.2.2. ABSOLUTE VECTORS

AN ABSOLUTE VECTOR IN DIRECT GRAPHICS IS A DRAW, MOVE, OR
POINT PLOT FROM THE CURRENT BEAM POSITION TO A SPECIFIED
SCREEN COORDINATE. NO WINDOWING OR CLIPPING IS PERFORMED.
MORE ENTRY AND APPROPRIATE OUTPUT HANDLING IS AUTOMATIC.

DRAW

A LINE MAY BE DRAWN FROM THE CURRENT BEAM POSITION
TO ANY POINT ON THE SCREEN WITH DRWABS. ON RETURN
FROM THIS ROUTINE, THE BEAM POSITION IS AT THE
GIVEN SCREEN COORDINATE.

CALLING SEQUENCE:

FCALL DRWABS,(@FEXP-IX,@FEXP-IY)

WHERE: @FEXP-IX - SCREEN X-COORDINATE OF THE GIVEN POINT.
@FEXP-IY - SCREEN 7-COORDINATE OF THE GIVEN POINT.

MOVE

THE BEAM MAY BE MOVED TO ANY POINT ON THE SCREEN WITH
MOVABS.

CALLING SEQUENCE:

FCALL MOVABS,(@FEXP-IX,@FEXP-IY)

WHERE: @FEXP-IX - SCREEN X-COORDINATE OF THE GIVEN POINT.
(3FEXP-IY - SCREEN Y-COORDINATE OF THE GIVEN POINT.

48

EXTERNAL DOCUMENTATION

POINT PLOT

A POINT MAY BE PLOTTED AT ANY LOCATION ON THE SCREEN
WITH PNTABS. ON RETURN, THE BEAM POSITION IS AT THE
GIVEN SCREEN COORDINATES.

CALLING SEQUENCE:

FCALL PNTABS,(@FEXP-IX,@FEXP-IY)

WHERE: @FEXP-IX - SCREEN X-COORDINATE OF THE GIVEN POINT.
(3FEXP-IY - SCREEN Y-COORDINATE OF THE GIVEN POINT.

DASH

A DASHED LINE MAY BE DRAWN FROM THE CURRENT BEAM POSITION
TO ANY POINT ON THE SCREEN WITH DSHABS. ON RETURN FROM
THIS ROUTINE, THE BEAM POSITION IS AT THE GIVEN SCREEN
COORDINATE.

CALLING SEQUENCE:

FCALL DSHABS, ((3FEXP-IX,@FEXP-IY,@FEXP-L)

WHERE: @FEXP-IX - SCREEN X-COORDINATE OF THE GIVEN POINT.
(3FEXP-IY - SCREEN Y-COORDINATE OF THE GIVEN POINT.
@FEXP-L - DASHED LINE SPECIFICATION.

A DASHED LINE IS SPECIFIED BY CON-
CATENATING INTEGERS DESCRIBING THE
LINE SEGMENT LENGTH AND VISIBILITY.
ALL CODES EXCEPT 9 SHOULD HAVE 2 OR
MORE INTEGERS.
1 5 RASTER UNITS, VISIBLE.
2 5 RASTER UNITS, INVISIBLE.
3 10 RASTER UNITS, VISIBLE.
4 10 RASTER UNITS, INVISIBLE.
5 25 RASTER UNITS, VISIBLE.
6 25 RASTER UNITS, INVISIBLE.
7 50 RASTER UNITS, VISIBLE.
8 50 RASTER UNITS, INVISIBLE.
9 ALTERNATE BRIGHT AND DARK BE-

TWEEN POINTS.

49

EXTERNAL DOCUMENTATION

5.2.3. RELATIVE VECTORS

RELATIVE VECTORS MAY ALSO BE DRAWN ON THE SCREEN. HOWEVER, NO
SCALING OR ROTATIONAL TRANSFORMATIONS ARE APPLIED TO THESE.
MODE ENTRY AND APPROPRIATE OUTPUT HANDLING IS AUTOMATIC. DI-
RECT GRAPHIC RELATIVE VECTORS WILL CAUSE THE BEAM TO MOVE FROM
ITS PRESENT POSITION TO THE POINT SPECIFIED BY THE DIRECT
DISPLACEMENT.

THE USER AGAIN HAS THE RESPONSIBILITY OF REMAINING ON THE SCREEN.
ALL RESULTANT VECTORS WILL HAVE THEIR COORDINATES INTERPRETED
AS MOD 1024.

DRAW

A RELATIVE LINE MAY BE DRAWN ON THE SCREEN FROM THE CURRENT
BEAM POSITION ACCORDING TO A GIVEN X AND Y DISPLACEMENT
WITH DRWREL.

CALLING SEQUENCE:

FCALL DRWREL,(@FEXP-IX,@FEXP-IY)

WHERE: @FEXP-IX - X-DISPLACEMENT IN SCREEN COORDINATES.
@FEXP-IY - Y-DISPLACEMENT IN SCREEN COORDINATES.

MOVE

A RELATIVE MOVE MAY BE GENERATED BY MOVREL.

CALLING SEQUENCE:

FCALL MOVREL,(@FEXP-IX,@FEXP-IY)

WHERE: @FEXP-IX - X-DISPLACEMENT IN SCREEN COORDINATES.
@FEXP-IY - Y-DISPLACEMENT IN SCREEN COORDINATES.

POINT PLOT

A POINT MAY BE PLOTTED RELATIVE TO THE CURRENT BEAM
POSITION WITH PNTREL.

CALLING SEQUENCE:

FCALL PNTREL,(@FEXP-IX,@FEXP-IY)

WHERE: @FEXP-IX - X-DISPLACEMENT IN SCREEN COORDINATES.
(3FEXP-IY - Y-DISPLACEMENT IN SCREEN COORDINATES.

50

EXTERNAL DOCUMENTATION

DASH

A DASHED LINE MAY BE DRAWN ON THE SCREEN RELATIVE TO
THE CURRENT BEAM POSITION ACCORDING TO A GIVEN X AND
Y DISPLACEMENT WITH A DSHREL.

CALLING SEQUENCE:

FCALL DSHREL,(@FEXP-IX,@FEXP-IY,@FEXP-L)

WHERE: @FEXP-IX - X-DISPLACEMENT IN SCREEN COORDINATES.
@FEXP-IY - Y-DISPLACEMENT IN SCREEN COORDINATES.
(3FEXP-L - DASHED LINE SPECIFICATION.

A DASHED LINE IS SPECIFIED BY CON-
CATENATING INTEGERS DESCRIBING THE
LINE SEGMENT LENGTH AND VISIBILITY.
ALL CODES EXCEPT 9 SHOULD HAVE 2 OR
MORE INTEGERS.
1 5 RASTER UNITS, VISIBLE.
2 5 RASTER UNITS, INVISIBLE.
3 10 RASTER UNITS, VISIBLE.
4 10 RASTER UNITS, INVISIBLE.
5 25 RASTER UNITS, VISIBLE.
6 25 RASTER UNITS, INVISIBLE.
7 50 RASTER UNITS, VISIBLE.
8 50 RASTER UNITS, INVISIBLE.
9 ALTERNATE BRIGHT AND DARK BE-

TEEN POINTS.

51

EXTERNAL DOCUMENTATION

MACRO DEFINITION LANGUAGE

6.1 STATEMENTS
LCLA

LCLB

LCLC

GBLA

GBLB

GBLC

DEFINE A LOCAL ARITHMETIC VARIABLE
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - ONE OR MORE VARIABLE SYMBOLS

THAT ARE TO BE USED AS SET SYMBOLS, SEPARATED
BY COMMAS; SET SYMBOLS MAY BE DEFINED AS
SUBSCRIPTED SET SYMBOLS

DEFINE A LOCAL BOOLEAN VARIABLE
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - ONE OR MORE VARIABLE SYMBOLS

THAT ARE TO BE USED AS SET SYMBOLS, SEPARATED
BY COMMAS; SET SYMBOLS MAY BE DEFINED AS
SUBSCRPTED SET SYMBOLS

DEFINE A LOCAL CHARACTER VARIABLE
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - ONE OR MORE VARIABLE SYMBOLS

SEPARATED BY COMMAS; SET SYMBOLS MAY BE
DEFINED AS SUBSCRIPTED SET SYMBOLS

DEFINE A GLOBAL ARITHMETIC VARIABLE
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - ONE OR MORE VARIABLE SYMBOLS

THAT ARE TO BE USED AS SET SYMBOLS, SEPARATED
BY COMMAS

DEFINE A GLOBAL BOOLEAN VARIABLE
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - ONE OR MORE VARIABLE SYMBOLS

THAT ARE TO BE USED AS SET SYMBOLS, SEPARATED
BY COMMAS

DEFINE A GLOBAL CHARACTER VARIABLE
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - ONE OR MORE VARIABLE SYMBOLS

THAT ARE TO BE USED AS SET SYMBOLS, SEPARATED
BY COMMAS;SET SYMBOLS MAY BE DEFINED AS
SUBSCRIPTED SET SYMBOLS

SETA

SETB

SET THE VALUE OF AN ARITHMETIC VARIABLE
NAME ENTRY - SETA SYMBOL
OPERAND ENTRY - AN ARITHMETIC EXPRESSION
SET THE VALUE OF A BOOLEAN VARIABLE
NAME ENTRY - A SETB SYMBOL
OPERAND ENTRY - A 0 OR A 1, OR LOGICAL EX-

PRESSION ENCOLSED IN PARANTHESES

52

EXTERNAL DOCUMENTATION

SETC SET THE VALUE OF A CHARACTER VARIABLE
NAME ENTRY - A SETC SYMBOL
OPERAND ENTRY - A TYPE ATTRIBUTE, A CHARACTER

EXPRESSION, A SUBSTRING NOTATION, OR A
CONCATENATION OF CHARACTER EXPRESSIONS
AND SUBSTRING NOTATIONS

AGO

AIF

MEXIT

ANOP

TRANSFER CONTROL TO A SPECIFIED STATEMENT
NAME ENTRY - A SEQUENCE SYMBOL OR NOT PRESENT
OPERANT ENTRY - A SEQUENCE SYMBOL
CONDITIONALLY TRANSFER CONTROL TO A
SPECIFIED STATEMENT
NAME ENTRY - A SEQUENCE SYMBOL OR NOT PRESENT
OPERAND ENTRY - A LOGICAL EXPRESSION ENCLOSED

IN PARANTHESES, IMMEDIATELY FOLLOWED BY A
SEQUENCE SYMBOL

STOP EXECUTING STATEMENTS IN THE CURRENT
NAME ENTRY - A SEQUENCE SYMBOL OR NOT PRESENT
OPERANT ENTRY - NOT USED, MUST NOT BE PRESENT;

MAY ONLY BE USED AS PART OF A MACRO
DEFINITION

NULL STATEMENT;USED TO PROVIDE A REQUIRED LABEL
NAME ENTRY - A SEQUENCE SYMBOL
OPERAND ENTRY - NOT USED, MUST NOT BE PRESENT

ACTR SPECIFY A LOOPING LIMIT
NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - AN ARITHMETIC SETA EXPRESSION

MNOTE PRINT AN ERROR MESSAGE
NAME ENTRY - A SEQUENCE SYMBOL, A VARIABLE

SYMBOL OR NOT PRESENT
OPERAND ENTRY - A SEVERITY CODE, FOLLOWED BY A

COMMA, FOLLOWED BY ANY COMBINATION OF CHAR-
ACTERS ENCLOSED IN APOSTROPHES; MAY ONLY
BE USED AS PART OF A MACRO DEFINITION

MACRO

MEND

NAME ENTRY - NOT USED, MUST NOT BE PRESENT
OPERAND ENTRY - NOT USED, SHOULD NOT BE PRESENT;

MAY ONLY BE USED AS PART OF A MACRO DEFINTION

NAME ENTRY - A SEQUENCE SYMBOL OR NOT PRESENT
OPERAND ENTRY - NOT USED, MUST NOT BE PRESENT;

MAY ONLY BE USED AS A PART OF A MACRO DEFINITION

53

EXTERNAL DOCUMENTATION

6.2. SYSTEM VARIABLE SYMBOLS

&SYSLIST(N)

&SYSINDX

REFERS TO THE N'TH POSITIONAL OPERAND OF
THE CURRENT MACRO
CONTAINS A FOUR CHARACTER FIELD GIVING A
UNIQUE NUMBER FOR EACH MACRO CALL

6.3. FEATURES

6.3.1. SUBLIST NOTATION
IF A POSITIONAL OR KEYWORD OPERAND IS CODED WITH
SURROUNDING PARENTHESIS THEN ITEMS WITHIN THE
PARENTHESIS WHICH ARE SEPARATED BY COMMAS MAY BE
REFERRED TO BY 'SUBLIST NOTATION1-
IF THE OPERAND WERE CODED AS 'A=(CAT,DOG,HOUSE)'
THEN &A(2) WOULD REFER TO »DOG1

6.3.2. SUBSTRING NOTATION
A SUBSET OF THE CHARACTERS COMPRISING THE VALUE OF
A SYMBOLIC PARAMETER OR ANY CHARACTER VARIABLE SYMBOL
MAY BE REFERRED TO BYENCLOSING THE VARIABLE IN
APOSTROPHES AND FOLLOWING THAT BY ASTARTING POSITION
AND LENGTH ENCLOSED IN PARENTHESIS-
IF &A HAS THE VALUE ?ABCDEFf THEN !&A'(2,3) WILL YIELD
THE VALUE 'BCD1

6.4 ATTRIBUTES

NUMBER N1

COUNT K'

GIVES THE NUMBER OF OPERANDS IN A SUBLIST
IF USED WITH A SYMBOLIC PARAMETER; GIVES
THE NUMBER OF POSITIONAL PARAMETERS
IF USED AS N'&SYSLIST; GIVES THE
NUMBER OF OPERANDS IN THE SUBLIST OF THE NfTH
POSITIONAL OPERAND IF USED AS N'&SYSLIST(N)
GIVES THE NUMBER OF CHARACTERS IN A
SYMBOLIC PARAMETER

54

EXTERNAL DOCUMENTATION

7. PHONETIC INPUT DATA FORMAT

PHONEMES ARE IDENTIFIED BY THE ONE TO THREE CHARACTER CODE USED
IN THE VOTRAX LITERATURE, AND ARE SEPARATED FROM THE INFLECTION
BY ONE OR MORE COMMA'S OR BLANKS. THE INFLECTION IS INDICATED
BY A SINGLE DIGIT - 1 FOR INI, 2 FOR IN2, 3 FOR IN3, AND 4 FOR
IN4. AN OMITTED INFLECTION IS ASSUMED TO BE 2.

EXAMPLE:

S, 1, AH1, IY, T, 3, R, UH3, 4, AH1, N, 3, IH, 1, K,
1, S, 1

IS ENCODED AS HEX

X,9F.D5.C9.2A.EB.64.D5.CD.85.99.9F,

7.1 VOTRAX PHONETIC CODES

PHONEME HEX EXAMPLES

PAO 03
PA1 3E
A 20 INITI(A)TED
Al 06
A2 05
AE 2E H(A)T, (A)T, TR(A)CK, K(A)NSAS
AE1 2F (A)LTITUDE, (A)CTUAL
AH 24 H(0)T, BL(0)CK, F(A)R, J(0)B, W(A)TCH
AH1 15 DEP(A)RTURE, F(0)XTR(0)T, UP(0)N
AH2 08
AW 3D (AW)FUL, (C(A)LL, C(0)ST, L(0)GGED, (O)FF
AW1 13
AW2 30
AY 21
B OE (B)RAKES, OR(B)IT
CH 10
D IE (D)AY, INITIATE(D), CO(D)ES
DT 04 BU(TT)ER
E 2C K(EE)PER, SH(EE)T, EXC(EE)DS
El 3C K(I)LO, Z(E)RO, (E)MERGENCY
EH 3B TH(E)RE, ST(EA)DY, S(E)NSE, QU(E)ST
EH1 02 M(E)SSAGE, L(E)VEL, QU(E)STION, D(E)DICATED
EH2 01 INTERFERENCE, ID(E)NTIFY, MIN(U)S, (E)XECUTE
EH3 00 NEG(A)TIVE, DEDICAT(E)D, IDENT(I)FY
ER 3A H(ER), OBS(ER)VE, B(IR)D, KEEP(ER)
F ID (F)IRE, INTER(F)ERENCE

55

EXTERNAL DOCUMENTATION

G 1C (G)ET, NE(G)ATIVE
H IB (H)AY, A(H)EAD
I 27 SH(I)P, WITH(I)N, (I)S, M(I)SSED
II OB INTERF(E)RENCE
12 OA ALT(I)TUDE, (I)NTERFERENCE, W(I)THIN, (I)N(I)TIATED
13 09 DED(I)CATED, EX(E)CUTE
IU 36
J 1A
K 19 (K)EY, SI(CK), (C)AR
L 18 (L)IGHT, (L)EVE(L), WE(LL)
M OC (M)Y, UNIFOR(M)
N OD (N)I(N)E
NG 14 BRI(NG)
0 26 F(0)R, UNIF(0)RM
01 35 N(0)RMAL, KIL(O), H(0)LD
02 34
00 17 F(00)T, B(U)SH
001 16 NORM(A)L, ERR(0)R
P 25 (P)OT
R 2B A(R)EA
S IF (S)EA
SH 11 (SH)Y
T 2A (T)EA
TH 39 (TH)REE
THV 38 (TH)EN
U 28 ASS(U)ME
Ul 37 EXEC(U)TE
UH 33 PL(U)S, (U)P, C(0)ME, T(OU)CH
UH1 32 (O)BSERVE, (U)NABLE
UH2 31 (A)CCOUNT, (U)PON, (A)CCOUNT
UH3 23 LEV(E)L
V OF SE(V)EN
W 2D (W)ON
Y 29 MAR(Y), GALL(EY), D(E)PARTURE
Yl 22 (Y)ES
Z 12 (Z)ERO
ZH 07 A(Z)URE, MEA(S)URE

56

EXTERNAL DOCUMENTATION

8. GRAIL CODING CONVENTIONS

FORMAT:

LABLE OP OPERANDS COMMENTS

OR

*COMMENTS CARD

THE 'LABEL' (IF PRESENT) *MUST* START IN CC1 AND MUST BE LESS THAN
7 CHARACTERS LONG.

'OP' STARTS IN ANY COLUMN BEYOND CC9, AND THE 'OP1 OF ALL STATEMENTS
BETWEEN DO AND DEND, DOINC OR DODEC AND DEND, THEN AND ELSE, ELSE
AND IEND, CASE AND THE NEXT CASE AT THE SAME LEVEL, AND CASE AND THE
NEXT CEND AT THE SAME LEVEL ARE INDENTED TWO COLUMNS WITH RESPECT
TO THE ENCLOSING STATEMENTS.

'OPERANDS' ARE SEPARATED FROM THE 'OP' BY ONE BLANK, AND MAY CONTAIN
IMBEDDED BLANKS *ONLY* IF THEY ARE ENCLOSED BETWEEN APOSTROPHES.

'COMMENTS' ARE SEPARATED FROM 'OPERANDS' BY AT LEAST ONE BLANK, AND
SHOULD START IN CC36 WHENEVER POSSIBLE.

A 'COMMENT CARD' HAS AN ASTERISK IN CC1, NAD THE CONTENTS OF THE
REST OF THE CARD APPEAR ON THE SOURCE LISTING, BUT ARE OTHERWISE
IGNORED.

CONTINUATION CARDS -

IF THE 'OPERANDS' WILL NOT FIT ON A SINGLE CARD, THEN THEY
MAY BE CONTINUED ON A SECOND CARD BY PUNCHING AN 'X' IN
CC72 AND CONTINUING THE OPERANDS IN CC16 OF THE NEXT CARD.

A SINGLE OPERAND *MUST* BE CONTINUED WITHIN ONE CARD.

57

EXTERNAL DOCUMENTATION

9. COMPILER ERROR MESSAGES

$BGN0001 - THE DO , DOINC, DODEC , IF OR CASES STATEMENT
OCCURS PRIOR TO ANY COURSE OR SECTION STATEMENT.

$BGN0002 - THE NESTING LIMIT HAS BEEN EXCEEDED.

$CEV0001 - EXECUTION VARIABLE NOT PERMITTED.

$CKL0001 - REQUIRED LABEL OMITTED
$CKL0002 - LABLE SPECIFIED, BUT NOT PERMITTED.
$CKL0003 - LABEL LONGER THAN SIX CHARACTERS

$DGC0001 - CHARACTER VALUE MISSING.
$DGC0002 - CHARACTER VALUE.

$IFC0001 - IMPROPER NESTING WITHIN AN 'IF' CONSTRUCT.
$IFC0002 - IMPROPER ORDER OF 'ELSE' , 'THEN' AND/OR 'IEND'

STATEMENTS ; OR MULTIPLE OCCURANCES OF SAME WITHIN
A SINGLE CONSTRUCT.

$IFC0003 - THE OPERAND OF A 'THEN* OR 'ELSE1 STATEMENT IS
NOT OMITTED OR 'NULL'.

$LNK0001 - MORE THAN TWO OPERANDS.
$LNK0002 - ARGUMENT SUBOPERAND IS NULL.
$LNK0003 - INVALID FORMAT FOR ARGUMENT SUBOPERAND.

$TOK0001 - EXPRESSION IS INVALID. ERROR DETECTED AT INDICATED
POINT.

$VLR0001 - INVALID SYNTAX OR VARIABLE TYPE IN ASSIGNMENT
EXPRESSION.

$XND0001 - THE MATCHING LABEL ON A CRSEND,CEND,DEND,IEND,
FEND OR SEND DOES NOT MATCH THE LABEL ON THE
STATEMENT BEGINNING THE CONSTRUCT.

$XND0002 - THE WRONG TYPE OF fENDf STATEMENT HAS BEEN
SPECIFIED- AN IEND FOR A DO CONSTRUCT , ETC.

$XND0003 - AN 'END* HAS BEEN SPECIFIED OUTSIDE OF *ANY*
ACTIVE CONSTRUCT.

CALCOOOl - TWO OPERANDS NOT PROVIDED.
CALC0002 - TYPE OF VARIABLE AND EXPRESSION DIFFER.
CALC0003 - EXECUTION VARIABLE USED AS RECEIVING VARIABLE.

58

EXTERNAL DOCUMENTATION

CASEOOOl - IMPROPER NESTING OF CASE STATEMENT.
CASE0002 - MORE CASE STATEMENTS FOUND THAN EXPECTED.
CASE0003 - LOGICAL EXPRESSION NOT SPECIFIED.

CASSOOOl - THE OPERAND OF THE 'CASES' STATEMENT IS OMITTED
OR LESS THAN ONE.

CASS0002 - CASES CONSTRUCT NESTING EXCEEDS 10 LEVELS; THE
CURRENT CONSTRUCT WILL BE CHECKED FOR A
PROPER CASE COUNT.

CASS0003 - EXEC PARAMETER NOT 'ALL' OR 'FIRST'.
CASS0004 - NUMBER OF CASE STATEMENTS EXCEEDS 99.

CDEFOOOl - INVALID FORMAT.
CDEF0002 - TYPE OF VARIABLE CONFLICTS WITH SPECIFIED VALUE.

CENDOOOl - FEWER CASE STATEMENTS WERE FOUND THAN INDICATED
ON THE CASES STATEMENT.

CEND0002 - MORE CASE STATEMENTS WERE FOUND THAN INDICATED
ON THE CASES STATEMENT.

DELY0002 - OPERAND NOT INTEGER.

DENDOOOl - MORE THAN ONE OPERAND.

ERASOOOl - OPERAND SUPPLIED, NONE ALLOWED.

ESCPOOOl - THE SPECIFIED LABEL IS NOT WITHIN THE CURRENT

EXECOOOl - SECTION NAME OMITTED.
EXEC0002 - MORE THAN TWO OPERANDS.
EXEC0004 - INVALID EXPRESSION FOR ARGUMENT.

FCLLOOOl - FORTRAN SUBROUTINE NAME MORE THAN SIX CHARACTERS.
FCLL0002 - FORTRAN SUBROUTINE NAME OMITTED.

FENDOOOl - OTHER THAN 'NO' OR 'YES' SPECIFIED FOR ERASE =.

FINDOOOl - WRONG NUMBER OF OPERANDS.

IFXXOOOl - CONDITIONAL CLAUSE MISSING.

LIMTOOOl - OTHER THAN ONE OPERAND SPECIFIED.

RDCCOOOl - MORE THAN THREE OPERANDS SPECIFIED.
RDCC0002 - EXECUTION VARIABLE USED AS RECEIVING VARIABLE.
RDCC0003 - SECOND OPERAND NOT AN INTEGER VARIABLE.
RDCC0004 - THIRD OPERAND NOT A CHARACTER VARIABLE.

59

EXTERNAL DOCUMENTATION

READOOOl - MORE THAN TWO OPERANDS FOR POSIT= PARAMETER.
READ0002 - MORE THAN ONE OPERAND SPECIFIED.
READ0004 - EXECUTION VARIABLE USED AS RECEIVING VARIABLE.

RECDOOOl - TYPE« PARAMETER OMITTED.
RECD0002 - MORE THAN ONE OPERAND FOR TYPE= PARAMETER.
RECD0003 - OPERAND MISSING.
RECD0004 - OPERAND NOT CHARACTER STRING.
RECD0005 - 'TYPE1 OPERAND NOT CHARACTER STRING.

SECTOOOl - MORE THAN 10 ARGUMENTS.

SHOWOOOl - NO OPERAND.
SHOW0002 - MORE THAN ONE OPERAND.

TALKOOOl - UNKNOWN VOCAL-FORM.

TEXTOOOl - A VALUE OTHER THAN 'YES1 OR 'NO' WAS SPECIFIED
FOR THE CRLF= OPERAND.

TEXT0002 - MORE THAN TWO OPERANDS ARE PRESENT FOR THE
"POSIT=" OPERAND.

TEXT0003 - FIRST POSIT= VALUE NOT INTEGER
TEXT0004 - SECOND POSIT= VALUE NOT INTEGER

VDEFOOOl - UNKNOWN TYPE OF VARIABLE.
VDEF0002 - VARIABLE NAME LONGER THAN SIX CHARACTERS.
VDEF0003 - LENGTH SPECIFICATION MISSING FOR CHARACTER VARIABLES.

UTYPOOOl - THERE ARE NOT EXACTLY THREE OPERANDS.
VTYP0002 - MORE THAN ONE VTYPE STATEMENT SUPPLIED.
VTYP0003 - TYPE CHARACTER NOT C, E OR F.
VTYP0004 - FORMAT OF AN OPERAND INCORRECT.
VTYP0005 - END OF RANGE LESS THAN BEGINNING OF RANGE.
VTYP0006 - MULTIPLE RANGES SPECIFIED FOR A SINGLE TYPE.
VTYP0007 - RANGE CHARACTER NOT ALPHABETIC.
VTYP0008 - RANGES OVERLAP.

60

DISTRIBUTION LIST

Assistant Secretary of the Navy (Manpower and Reserve Affairs)
Chief of Naval Operations (OP-96)
Chief of Naval Operations (OP-914)
Chief of Naval Operations (OP-964)
Chief of Naval Operations (OP-987P10)
Chief of Naval Operations (OP-103B)
Chief of Naval Personnel (Pers-10c)
Chief of Naval Education and Training (00A)
Chief of Naval Education and Training (N-2)
Chief of Naval Education and Training (N-5)
Chief of Naval Education and Training (N-7)
Chief of Naval Technical Training
Chief of Naval Technical Training (015)
Chief of Naval Technical Training (016)
Chief of Naval Technical Training (N-3)
Chief of Naval Technical Training (N-4)
Chief of Naval Material (NMAT 0344)
Chief of Naval Material (NMAT 035)
Chief of Naval Education and Training Support
Chief of Naval Education and Training Support (N-21)
Chief of Naval Research (Code 450) (4)
Chief of Naval Research (Code 458) (2)
Commander Training Command, U. S. Pacific Fleet
Commander Training Command, U. S. Atlantic Fleet (Code N3A)
Commanding Officer, Fleet Combat Direction Systems Training

Center, Pacific (Code 00E)
Commanding Officer, Fleet Training Center, San Diego
Commanding Officer, Naval Training Equipment Center
Commanding Officer, Naval Damage Control Training Center
Commanding Officer, Naval Aerospace Medical Institute
Commanding Officer, Naval Education and Training Program Development Center
Commanding Officer, Service School Command, San Diego
Commanding Officer, Naval Education and Training Support Center, Pacific
Commanding Officer, Naval Development and Training Center (Code 0120)
Officer in Charge, Naval Education and Training Information Systems
Activity, Memphis Detachment

Director, Training Analysis and Evaluation Group (TAEG)
Superintendent, Naval Academy
Superintendent, Naval Postgraduate School
Superintendent, U. S. Military Academy
Superintendent, U. S. Air Force Academy
Superintendent, U. S. Coast Guard Academy
Assistant Director, Life Sciences, Air Force Office of Scientific Research
Army Research Institute for Behavioral Sciences
Personnel Research Division, Air Force Human Resources Laboratory (AFSC),
Lackland Air Force Base

Occupational and Manpower Research Division, Air Force Human Resources
Laboratory (AFSC), Lackland Air Force Base

61

Technical Training Division, Air Force Human Resources Laboratory,
Lowry Air Force Base

Flying Training Division, Air Force Human Resources Laboratory,
Williams Air Force Base

Advanced Systems Division, Air Force Human Resources Laboratory,
Wright-Patterson Air Force Base

Secretary Treasurer, U. S. Naval Institute
Technical Library, Air Force Human Resources Laboratory,
Lackland Air Force Base

National Research Council
National Science Foundation
Science and Technology Division, Library of Congress
Defense Documentation Center (12)

62

^»w

NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER
SAN DIEGO. CALIFORNIA 92152

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE, $300

POSTAGE AND FEES PA»D

DEPARTMENT OF THE NAVY

DOD-316

